Programmer to Programmer™

Professional

JavaScript

for Web Developers

Nicholas C. Zakas

Updates, source code, and Wrox technical support at www.wrox.com

Professional JavaScript™ for Web Developers

Professional JavaScript™ for Web Developers

Nicholas C. Zakas

WILEY

Wiley Publishing, Inc.

Professional JavaScript™ for Web Developers
Copyright © 2005 by Wiley Publishing Inc. All rights reserved.

Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 646-8700. Requests to the Publisher for permission should be addressed to the Legal Department,
Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317)
572-4355, or online at www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR
MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR
COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL
WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTIC-
ULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMO-
TIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE
SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT
THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PRO-
FESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOT
THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR
THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY
PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE
THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Depart-
ment within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317)
572-4002.

Trademarks: Wiley, the Wiley Publishing logo, Wrox, the Wrox logo, and Programmer to Programmer
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates. JavaScript is a
trademark of Sun Microsystems, Inc. in the United States and other countries. All other trademarks are
the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or
vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data is available from the publisher.
ISBN-13: 978-0-7645-7908-0

ISBN-10: 0-7645-7908-8

Printed in the United States of America

109 87 654321

About the Author

Nicholas C. Zakas is a user interface designer for Web applications, specializing in client-side technolo-
gies such as JavaScript, HTML, and CSS. Nicholas currently works as Senior Software Engineer, Design
Engineering, at MatrixOne, Inc. located in Westford, Massachusetts, USA.

Nicholas has a B.S. in Computer Science from Merrimack College, where he learned traditional pro-
gramming in C and C++. During college, he began investigating the World Wide Web and HTML in his
spare time, eventually teaching himself enough to be hired as Webmaster of a small software company
named Radnet, Inc. in Wakefield, Massachusetts, USA. It was there that Nicholas began learning
JavaScript and working on Web applications.

Nicholas can be reached through his Web site, http: //www.nczonline.net/.

Credits

Vice President and Executive Group Publisher: Development Editor:

Richard Swadley Sharon Nash

Vice President and Publisher: Senior Production Editor:

Joseph B. Wikert Angela Smith

Acquisitions Editor: Technical Editor:

Jim Minatel Jean-Luc David, Wiley-Dreamtech India Pvt Ltd
Editorial Manager: Text Design & Composition:

Mary Beth Wakefield Wiley Composition Services

Acknowledgments

It takes more than just one person to write a book of this nature, despite the single name on the front
cover. Without the help of numerous individuals, this book would not have been possible.

First are foremost, thanks to everyone at Wiley Publishing, especially Jim Minatel and Sharon Nash, for
providing all the guidance and support that a new author needs.

Thanks to all those who offered their ideas on what a good JavaScript book should include: Keith
Ciociola, Ken Fearnley, John Rajan, and Douglas Swatski.

A special thanks to everyone who reviewed the subject matter ahead of time: Erik Arvidsson, Bradley
Baumann, Guilherme Blanco, Douglas Crockford, Jean-Luc David, Emil A. Eklund, Brett Fielder, Jeremy

McPeak, and Micha Schopman. All your input was excellent and made for a much better book.

Thanks to Drs. Ed and Frances Bernard for keeping me in tip-top health during the writing of this book
and the past few years.

Last, but certainly not least, thanks to my family, mom, dad, and Greg, and my extremely understanding
girlfriend, Emily. Your love and support helped take me from the proposal to the final published copy.

Vii

Contents

Acknowledgments vii
Introduction XXi
Chapter 1: What Is JavaScript? 1
A Short History 1
JavaScript Implementations 3
ECMAScript 3
The Document Object Model (DOM) 6
The Browser Object Model (BOM) 9
Summary 9
Chapter 2: ECMAScript Basics 11
Syntax 11
Variables 12
Keywords 15
Reserved Words 15
Primitive and Reference Values 15
Primitive Types 16
The typeof operator 16
The Undefined type 17
The Null type 18
The Boolean type 18
The Number type 18
The String type 20
Conversions 21
Converting to a string 22
Converting to a number 23
Type Casting 24
Reference Types 25
The Object class 26
The Boolean class 27
The Number class 27

Contents

The String class 29
The instanceof operator 32
Operators 33
Unary operators 33
Bitwise operators 37
Boolean operators 43
Multiplicative operators 46
Additive operators 47
Relational operators 49
Equality operators 50
Conditional operator 52
Assignment operators 52
Comma operator 53
Statements 53
The if statement 53
lterative statements 54
Labeled statements 56
The break and continue statements 56
The with statement 58
The switch statement 58
Functions 59
No overloading 61
The arguments object 62
The Function class 63
Closures 65
Summary 66
Chapter 3: Object Basics 67
Object-Oriented Terminology 67
Requirements of object-oriented languages 68
Composition of an object 68
Working with Objects 68
Declaration and instantiation 68
Object references 69
Dereferencing objects 69
Early versus late binding 69
Types of Objects 70
Native objects 70
Built-in objects 81
Host objects 87

Contents

Scope 88
Public, protected, and private 88
Static is not static 88
The this keyword 89

Defining Classes and Objects 920
Factory paradigm 90
Constructor paradigm 92
Prototype paradigm 93
Hybrid constructor/prototype paradigm 94
Dynamic prototype method 95
Hybrid factory paradigm 96
Which one to use? o7
A practical example 97

Modifying Objects 99
Creating a new method 99
Redefining an existing method 100
Very late binding 101

Summary 102

Chapter 4: Inheritance 103

Inheritance in Action 103

Implementing Inheritance 104
Methods of inheritance 105
A more practical example 111

Alternative Inheritance Paradigms 115
Zlnherit 116
xbObjects 120

Summary 124

Chapter 5: JavaScript in the Browser 125

JavaScript in HTML 125
The <script/> tag 125
External file format 126
Inline code versus external files 127
Tag placement 128
To hide or not to hide 129
The <noscript/> tag 130
Changes in XHTML 131

Xi

Contents

JavaScript in SVG
Basic SVG
The <script/> tag in SVG
Tag placement in SVG
The Browser Object Model
The window object
The document object
The location object
The navigator object
The screen object
Summary

Chapter 6: DOM Basics

133
133
134
135

136
136
149
153
155
156

157

159

What Is the DOM?
Introduction to XML
An API for XML
Hierarchy of nodes
Language-Specific DOMs

DOM Support

Using the DOM
Accessing relative nodes
Checking the node type
Dealing with attributes
Accessing specific nodes
Creating and manipulating nodes

DOM HTML Features
Attributes as properties
Table methods

DOM Traversal
Nodelterator
TreeWalker

Detecting DOM Conformance

DOM Level 3

Summary

Chapter 7: Regular Expressions

159
159
162
163
166

167

167
167
169
169
171
173

178
178
179

182
182
187

189

191

191

193

Regular Expression Support
Using a RegExp object
Extended string methods

Xii

193
194
195

Contents

Simple Patterns 197
Metacharacters 197
Using special characters 197
Character classes 199
Quantifiers 201

Complex Patterns 205
Grouping 205
Backreferences 206
Alternation 207
Non-capturing groups 209
Lookaheads 210
Boundaries 210
Multiline mode 212

Understanding the RegExp Object 212
Instance properties 213
Static properties 214

Common Patterns 216
Validating dates 216
Validating credit cards 218
Validating e-mail addresses 222

Summary 223

Chapter 8: Browser and Operating System Detection 225

The Navigator Object 225

Methods of Browser Detection 226
Object/feature detection 226
User-agent string detection 226

A (Not So) Brief History of the User-Agent String 227
Netscape Navigator 3.0 and Internet Explorer 3.0 227
Netscape Communicator 4.0 and Internet Explorer 4.0 229
Internet Explorer 5.0 and higher 230
Mozilla 230
Opera 232
Safari 233
Epilogue 233

The Browser Detection Script 234
Methodology 234
First Steps 234
Detecting Opera 237

Xiii

Contents

Detecting Konqueror/Safari 239
Detecting Internet Explorer 241
Detecting Mozilla 242
Detecting Netscape Communicator 4.x 243
The Platform/Operating System Detection Script 244
Methodology 244
First steps 245
Detecting Windows operating systems 245
Detecting Macintosh operating systems 247
Detecting Unix operating systems 248
The Full Script 249
Example: A Login Page 252
Summary 259
Chapter 9: All about Events 261
Events Today 261
Event Flow 262
Event bubbling 262
Event capturing 264
DOM event flow 265
Event Handlers/Listeners 266
Internet Explorer 267
DOM 268
The Event Object 270
Locating 270
Properties/methods 271
Similarities 274
Differences 276
Types of Events 279
Mouse events 280
Keyboard events 284
HTML events 286
Mutation events 291
Cross-Browser Events 292
The EventUtil object 292
Adding/removing event handlers 292
Formatting the event object 294
Getting the event object 299
Example 300
Summary 301

Xiv

Contents

Chapter 10: Advanced DOM Techniques

303

Scripting Styles
DOM style methods
Custom tooltips
Collapsible sections
Accessing style sheets
Computed styles
innerText and innerHTML
outerText and outerHTML
Ranges
Ranges in the DOM
Ranges in Internet Explorer
How practical are ranges?
Summary

303
305
307
308
309
312
314
315
317
317
329
333
333

335

Chapter 11: Forms and Data Integrity

Form Basics
Scripting the <form/> Element
Getting form references
Accessing form fields
Form field commonalities
Focus on the first field
Submitting forms
Submit only once
Resetting forms
Text boxes
Retrieving/changing a text box value
Selecting text
Text box events
Select text automatically
Tab forward automatically
Limit textarea characters
Allowing/blocking characters in text boxes
Numeric text boxes with the up/down arrow keys
List Boxes and Combo Boxes
Accessing options
Retrieving/changing the selected option(s)
Adding options
Removing options

335
337
337
338
338
339
340
341
342
342
343
344
345
345
346
347
349
354
356
357
357
359
360

XV

Contents

Moving Options 361
Reordering options 361
Creating an Autosuggest Text Box 362
Matching 362
The guts 363
Summary 365
Chapter 12: Sorting Tables 367
The Starting Point — Arrays 367
The reverse() method 369
Sorting a One-Column Table 369
The comparison function 371
The sortTable() function 371
Sorting a Multicolumn Table 373
The comparison function generator 374
Modifying the sortTable() function 375
Sorting in descending order 376
Sorting with different data types 377
Advanced sorting 381
Summary 385
Chapter 13: Drag and Drop 387
System Drag and Drop 387
Drag-and-drop events 388
The dataTransfer object 393
The dragDrop() method 397
Advantages and disadvantages 399
Simulated Drag and Drop 399
The code 400
Creating drop targets 403
Advantages and disadvantages 405
zDragDrop 405
Creating a draggable element 406
Creating a drop target 406
Events 406
Example 408
Summary 409

XVi

Contents

Chapter 14: Error Handling 411
The Importance of Error Handling 411
Errors versus Exceptions 412
Error Reporting 413

Internet Explorer (Windows) 413
Internet Explorer (MacOS) 415
Mozilla (all platforms) 416
Safari (MacOS X) 417
Opera 7 (all platforms) 418
Handling Errors 419
The onerror event handler 419
The try...catch statement 423
Debugging Techniques 428
Using alerts 428
Using the Java console 429
Posting messages to the JavaScript console (Opera 7+ only) 430
Throwing your own errors 431
The JavaScript Verifier 432
Debuggers 432
Microsoft Script Debugger 432
Venkman — Mozilla’s debugger 435
Summary 443

Chapter 15: XML in JavaScript 445

XML DOM Support in Browsers 445
XML DOM support in IE 445
XML DOM support in Mozilla 450
Making interfaces play together 455

XPath Support in Browsers 465
Introduction to XPath 466
XPath support in IE 467
XPath support in Mozilla 467

XSLT Support in Browsers 471
XSLT support in IE 473
XSLT support in Mozilla 477

Summary 479

XVii

Contents

Chapter 16: Client-Server Communication 481
Cookies 481
Cookie ingredients 482
Other security restrictions 482
Cookies in JavaScript 483
Cookies on the server 485
Passing cookies between client and server 488
Hidden Frames 490
Using iframes 491
HTTP Requests 493
Using headers 495
Copycat implementations 496
Performing a GET request 496
Performing a POST request 497
LiveConnect Requests 498
Performing a GET request 498
Performing a POST request 500
Intelligent HTTP Requests 502
The get() method 502
The post() method 505
Practical Uses 506
Summary 507
Chapter 17: Web Services 509
A Quick Web Service Primer 509
What is a Web service? 509
WSDL 510
Web Services in Internet Explorer 513
Using the WebService component 513
WebService component example 515
Web Services in Mozilla 516
Enhanced privileges 517
Using the SOAP methods 518
Using WSDL proxies 522

A Cross-Browser Approach 525
The WebService object 525
The Temperature Service 527
Using the TemperatureService object 529
Summary 530

xviii

Contents

Chapter 18: Interacting with Plugins 531
Why Use Plugins? 531
Popular Plugins 532
MIME Types 533
Embedding Plugins 533

Including parameters 534
Netscape 4.x 534
Detecting Plugins 535
Detecting Netscape-style plugins 535
Detecting ActiveX plugins 540
Cross-browser detection 542
Java Applets 543
Embedding applets 543
Referencing applets in JavaScript 544
Writing applets 545
JavaScript-to-Java communication 546
Java-to-JavaScript communication 548
Flash Movies 551
Embedding Flash movies 552
Referencing Flash movies 552
JavaScript-to-Flash communication 553
Flash-to-JavaScript communication 555
ActiveX Controls 558
Summary 561

Chapter 19: Deployment Issues 563

Security 563
The Same Origin Policy 563
Window object issues 564
Mozilla-specific issues 566
Resource limitations 568

Internationalization Concerns 568
Detecting language using JavaScript 569
Strategies 569
String considerations 570

Optimizing JavaScript 573
Download time 573
Execution time 578

Xix

Contents

Intellectual Property Issues 593
Obfuscating 593
Microsoft Script Encoder (IE only) 594

Summary 595

Chapter 20: The Evolution of JavaScript 597

ECMAScript 4 597
Netscape’s proposal 598
Implementations 604

ECMAScript for XML 605
Approach 605
The for each..in Loop 607
New classes 607
Implementations 616

Summary 616

Index 617

XX

Introduction

Although once supported by Netscape Enterprise Server and Active Server Pages (ASP) on the server,
JavaScript is primarily a client-side scripting language for use in Web browsers. Its main focus today is
to help developers interact with Web pages and the Web browser window itself.

JavaScript is very loosely based on Java, an object-oriented programming language popularized for use
on the Web by way of embedded applets. Although JavaScript has a similar syntax and programming
methodology, it is not a “light” version of Java. Instead, JavaScript is its own language, finding its home
in Web browsers around the world and enabling enhanced user interaction on Web sites and Web appli-
cations alike.

In this book, JavaScript is covered from its very beginning in the earliest Netscape browsers to the
present-day incarnations flush with support for XML and Web Services. You learn how to extend the
language to suit specific needs and how to create seamless client-server communication without inter-
mediaries such as Java or hidden frames. In short, you learn how to apply JavaScript solutions to
business problems faced by Web developers everywhere.

What Does This Book Cover?

Professional JavaScript for Web Developers provides a developer-level introduction along with the more
advanced and useful features of JavaScript.

Starting at the beginning, the book explores how JavaScript originated and evolved into what it is today.
A detailed discussion of the components that make up a JavaScript implementation follows, with spe-
cific focus on standards such as ECMAScript and the Document Object Model (DOM). The differences in
JavaScript implementations used in different popular Web browsers are also discussed.

Building on that base, the book moves on to cover basic concepts of JavaScript including its version of
object-oriented programming, inheritance, and its use in various markup languages such as HTML. An
in-depth examination of events and event handling is followed by an exploration of browser detection
techniques and a guide to using regular expressions in JavaScript. The book then takes all this knowl-
edge and applies it to creating dynamic user interfaces.

The last part of the book is focused on issues related to the deployment of JavaScript solutions in Web

applications. These topics include error handling, debugging, security, optimization/obfuscation, XML,
and Web Services.

XXi

Introduction

Who Is This Book For?

This book is aimed at three groups of readers:

Q Experienced developers familiar with object-oriented programming who are looking to learn
JavaScript as it relates to traditional OO languages such as Java and C++.

Q Web application developers attempting to enhance the usability of their Web sites and Web
applications.

Q Novice JavaScript developers aiming to better understand the language.

In addition, familiarity with the following related technologies is a strong indicator that this book is
for you:

a XML

XSLT

Java

Web Services
HTML

CSS

U 000 0o

This book is not aimed at beginners lacking a basic computer science background or those looking to
add some simple user interactions to Web sites. These readers should instead refer to Wrox’s Beginning
JavaScript, Second Edition (Wiley Publishing, Inc., ISBN 0-7645-5587-1).

What You Need to Use This Book

To run the samples in the book, you need the following:

O Windows 2000, Windows Server 2003, Windows XP, or Mac OS X

Q Internet Explorer 5.5 or higher (Windows), Mozilla 1.0 or higher (all platforms), Opera 7.5 or
higher (all platforms), or Safari 1.2 or higher (Mac OS X).

The complete source code for the samples is available for download from the Web site at
http://www.wrox.com/.

How Is This Book Structured?

1. WhatIs JavaScript?
This chapter explains the origins of JavaScript: where it came from, how it evolved, and what it
is today. Concepts introduced include the relationship between JavaScript and ECMAScript, the
Document Object Model (DOM), and the Browser Object Model (BOM). A discussion of the rele-
vant standards from the European Computer Manufacturer’s Association (ECMA) and the
World Wide Web Consortium (W3C) is also included.

xxii

Introduction

10.

ECMAScript Basics

This chapter examines the core technology upon which JavaScript is built, ECMAScript. This
chapter describes the basic syntax and concepts necessary to write JavaScript code, from declar-
ing variables and functions to using and understanding primitive and reference values.

Object Basics

This chapter focuses on the foundations of object-oriented programming (OOP) in JavaScript.
Topics covered include defining custom objects using a variety of different methods, creating
object instances, and understanding the similarities and differences to OOP in JavaScript and Java.

Inheritance

This chapter continues the exploration of OOP in JavaScript, describing how inheritance works.
The various methods of achieving inheritance are discussed, and these methods are compared
and contrasted with inheritance in Java.

JavaScript in the Browser

This chapter explains how to include JavaScript in Web pages made with a variety of languages,
including Hyper Text Markup Language (HTML), Scalable Vector Graphics (SVG), and XML
User Interface Language (XUL). This chapter also introduces the Browser Object Model (BOM)
and its various objects and interfaces.

DOM Basics
This chapter introduces the DOM as implemented in JavaScript. It includes an introduction to

DOM concepts of specific value to Web developers. These concepts are applied later in exam-
ples using HTML, SVG, and XUL.

Regular Expressions

This chapter focuses on the JavaScript implementation of regular expressions, which are a pow-
erful tool for data validation and string manipulation. The origins of regular expressions are
explored, as well as its syntax and usage across a variety of programming languages. The chap-
ter ends with an explanation of the similarities and differences in JavaScript’s implementation.

Browser and Operating System Detection

This chapter explains the importance of writing JavaScript to run on a variety of Web browsers.
The two methods of browser detection, object/feature detection and user-agent string detection,
are discussed; the advantages and disadvantages of each approach are listed.

All about Events

This chapter discusses one of the most important concepts in JavaScript: events. Events are the
main way to tie JavaScript to a Web-user interface regardless of the markup language being
used. This chapter describes the various methods of handling events and the concept of event
flow (including bubbling and capturing).

Advanced DOM Techniques

This chapter introduces some of the more advanced features of the DOM, including ranges and
style-sheet manipulation. I give examples of when and how to use these technologies, and I also
discuss how to achieve cross-browser support given the differences in implementations.

XXiii

Introduction

XXiv

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Forms and Data Integrity

This chapter discusses the importance of data validation when using forms. As I introduce tech-
niques for handling validation, I apply concepts introduced earlier, such as regular expressions,
events, and DOM manipulation.

Sorting Tables

This chapter applies a number of language features described earlier to accomplish dynamic
sorting of tables on the client. It includes an in-depth discussion of sorting in JavaScript as well
as using events, DOM manipulation, and comparison operators to develop a generic table-
sorting protocol that can be used in a number of different Web browsers.

Drag and Drop

This chapter explains the concept of drag and drop as it applies to JavaScript and Web browsers.
The concept of system drag and drop versus simulated drag and drop is discussed, ending with
the creation of a standard drag-and-drop interface that can be used across browsers.

Error Handling

This chapter introduces the concept of error handling in JavaScript by discussing the use of the
try...catch statement and the onerror event handler. Other topics explored are the creation
of custom errors using the throw statement and the use of JavaScript debuggers.

XML in JavaScript

This chapter presents the features of JavaScript used to read and manipulate eXtensible Markup
Language (XML) data. I explain the differences in support and objects in various Web browsers,
and I offer suggestions for easier cross-browser coding. This chapter also covers the use of
eXtensible Stylesheet Language Transformations (XSLT) to transform XML data on the client.

Client-Server Communication

This chapter explores the various JavaScript methods of communicating back to the server. These
methods include the use of cookies and JavaScript-based HTTP requests. This chapter also
explains how to achieve both GET and POST HTTP requests without the use of hidden frames.

Web Services

This chapter looks at how to consume Web Services using JavaScript. The different methods
used in Internet Explorer and Mozilla are discussed, along with a basic solution to the problem
of adding Web Service support to browsers that don’t have built-in support.

Interacting with Plugins

This chapter explains the various methods of communication between JavaScript and browser
plugins such as Java applets, SVG documents, and ActiveX controls. Other topics include how
to program plugins for use with JavaScript.

Deployment Issues

This chapter focuses on what happens after the completion of JavaScript coding. Specifically, it
describes what should happen before you deploy a JavaScript solution on either a Web site or
in a Web application. Topics covered include security issues, internationalization, optimization,
intellectual property protection, and Section 508 compliance.

The Evolution of JavaScript
This chapter looks into the future of JavaScript to see where the language is headed.
ECMAScript 4 and XML for ECMAScript are discussed.

Introduction

Conventions

To help you get the most from the text and keep track of what’s happening, I've used a number of con-
ventions throughout the book.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.
As for styles in the text:

Q We highlight important words when we introduce them

Q We show keyboard strokes like this: Ctrl+A

Q We show file names, URLs, and code within the text like so: persistence.properties
Q

We present code in two different ways:
In code examples we highlight new and important code with a gray background.

The gray highlighting is not used for code that's less important in the present
context or has been shown before.

Source Code

As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All the source code used in this book is available
for download at http: //www.wrox.com. Once at the site, simply locate the book’s title (either by using
the Search box or by using one of the title lists) and click the Download Code link on the book’s detail
page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; for this book the
ISBN is 0-7645-7908-8.

After you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at http: //www.wrox.com/dynamic/books/download.
aspx to see the code available for this book and all other Wrox books.

Errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration and, at the same time, you will be helping us provide even higher quality
information.

XXV

Introduction

To find the errata page for this book, go to http: //www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can
view all errata that has been submitted for this book and posted by Wrox editors. A complete book list
including links to each book’s errata is also available at www . wrox . com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport.
shtml and complete the form there to send us the error you have found. We'll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p . wrox. com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and to interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

Athttp://p2p.wrox.com you will find a number of different forums that will help you, not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

Go to p2p.wrox.com and click the Register link.

Read the terms of use and click Agree.

Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

After you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe to This Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-

tions about how the forum software works as well as to see many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

XXVi

What Is JavaScript?

When JavaScript first appeared in 1995, its main purpose was to handle some of the input valida-
tion that had previously been left to server-side languages such as Perl. Prior to that time, a round
trip to the server was needed to determine if a required field had been left blank or an entered
value was invalid. Netscape Navigator sought to change that with the introduction of JavaScript.
The capability to handle some basic validation on the client was an exciting new feature at a time
when use of telephone modems (operating at 28.8 kbps) was widespread. Such slow speeds
turned every trip to the server into an exercise in patience.

Since that time, JavaScript has grown into an important feature of every major Web browser on
the market. No longer bound to simple data validation, JavaScript now interacts with nearly all
aspects of the browser window and its contents. Even Microsoft, with its own client-side scripting
language called VBScript, ended up including its own JavaScript implementation in Internet
Explorer from its very earliest version.

In this chapter, you will learn how and why JavaScript came about, from its humble beginnings to
its modern-day, feature-packed implementations. To be able to use JavaScript to its full potential, it
is important to understand its nature, history, and limitations. Specifically, this chapter examines:
QO The origins of JavaScript and client-side scripting
O The different parts of the JavaScript language
0O The standards related to JavaScript
a

JavaScript support in popular Web browsers

A Short History

Around 1992, a company called Nombas began developing an embedded scripting language
called C-minus-minus (Cmm for short). The idea behind Cmm was simple: a scripting language

Chapter 1

powerful enough to replace macros, but still similar enough to C (and C++) that developers could learn
it quickly. This scripting language was packaged in a shareware product called CEnvi, which first
exposed the power of such languages to developers. Nombas eventually changed the name Cmm to
ScriptEase because the latter sounded “too negative” and the letter C “frightened people” (http://
www .nombas . com/us/scripting/history.htm). ScriptEase is now the driving force behind Nombas
products. When the popularity of Netscape Navigator started peaking, Nombas developed a version of
CEnvi that could be embedded into Web pages. These early experiments were called Espresso Pages, and
they represented the first client-side scripting language used on the World Wide Web. Little did Nombas
know that its ideas would become an important foundation for the Internet.

As Web surfing gained popularity, a gradual demand for client-side scripting languages developed. At
the time, most Internet users were connecting over a 28.8 kbps modem even though Web pages were
growing in size and complexity. Adding to users’ pain was the large number of round-trips to the server
required for simple form validation. Imagine filling out a form, clicking the Submit button, waiting 30
seconds for processing, and then being met with a message telling you that you forgot to complete a
required field. Netscape, at that time on the cutting edge of technological innovation, began seriously
considering the development of a client-side scripting language to handle simple processing.

Brendan Eich, who worked for Netscape at the time, began developing a scripting language called
LiveScript for the upcoming release of Netscape Navigator 2.0 in 1995, with the intention of using it both
in the browser and on the server (where it was to be called LiveWire). Netscape entered into a develop-
ment alliance with Sun Microsystems to complete the implementation of LiveScript in time for release.
Just before Netscape Navigator 2.0 was officially released, Netscape changed the name to JavaScript in
order to capitalize on Java as a new Internet buzzword. Netscape’s gamble paid off and JavaScript
became a must-have from that point on.

Because JavaScript 1.0 was such a hit, Netscape released version 1.1 in Netscape Navigator 3.0. Right
around that time, Microsoft decided to throw its hat into the ring and released Internet Explorer 3.0 with
a JavaScript-clone called JScript (so-called in order to avoid any possible licensing issues with Netscape).
This major step for Microsoft into the realm of Web browsers is now a date that lives in infamy for
Netscape, but it also represented a major step in the development of JavaScript as a language.

After Microsoft threw its hat into the ring, three different JavaScript versions were floating around:
JavaScript in Netscape Navigator, JScript in Internet Explorer, and CEnvi in ScriptEase. Unlike C and
many other programming languages, JavaScript had no standards governing its syntax or features, and
the three different versions only highlighted this problem. With industry fears mounting, it was decided
that the language must be standardized.

In 1997, JavaScript 1.1 was submitted to the European Computer Manufacturers Association (ECMA) as a
proposal. Technical Committee #39 (TC39) was assigned to “standardize the syntax and semantics of a gen-
eral purpose, cross-platform, vendor-neutral scripting language” (http://www.ecma-international
.org/memento/TC39.htm). Made up of programmers from Netscape, Sun, Microsoft, Borland, and other
companies with interest in the future of scripting, TC39 met for months to hammer out ECMA-262, a stan-
dard defining a new scripting language named ECMAScript.

The following year, the International Organization for Standardization and International Electrotechnical
Commission (ISO/IEC) also adopted ECMAScript as a standard (ISO/IEC-16262). Since that time, Web
browsers have tried, with varying degrees of success and failure, to use ECMAScript as a basis for their
JavaScript implementations.

What Is JavaScript?

JavaScript Implementations

Although ECMAScript is an important standard, it is not the only part of JavaScript, and certainly not
the only part that has been standardized. Indeed, a complete JavaScript implementation is made up of
three distinct parts (see Figure 1-1):

QO The Core (ECMAScript)
Q The Document Object Model (DOM)
Q The Browser Object Model (BOM)

JavaScript

ECMAScript DOM BOM

Figure 1-1

ECMAScript

ECMAScript doesn’t have ties to any browser in particular and, actually, has no methods for user input
or output to speak of. (It is not unlike languages such as C, which rely on external libraries to accomplish
such tasks.) So what is ECMAScript? ECMA-262 (p. 2) describes it like this:

“ECMAScript can provide core scripting capabilities for a variety of host environments, and therefore
the core scripting language is specified...apart from any particular host environment.”

A Web browser is considered a host environment for ECMAScript, but it is not the only host environment.
Indeed, numerous other environments (such as Nombas’s ScriptEase and Macromedia’s ActionScript,
used in both Flash and Director MX) can host ECMAScript implementations. So what does ECMAScript
specify outside of a browser? To put it simply, ECMAScript describes the following;:

QO Syntax

Types
Statements
Keywords
Reserved Words

U 00U o

Operators
Q Objects
ECMAScript is simply a description, defining all the properties, methods, and objects of a scripting lan-

guage. Other languages implement ECMAScript, as JavaScript does (see Figure 1-2), as the baseline for
functionality.

Chapter 1

ECMAScript

IS

JavaScript ActionScript ScriptEase
Figure 1-2

Each browser has its own implementation of the ECMAScript interface, which is then extended to con-
tain the DOM and BOM (discussed in the following sections). There are other languages that also imple-
ment and extend ECMAScript such as Windows Scripting Host (WSH), ActionScript in Macromedia
Flash and Director, and Nombas ScriptEase.

ECMAScript editions

ECMAScript is separated into editions rather than versions because it is defined in a standard called
ECMA-262. Like any standard, ECMA-262 can be edited and updated. When a major update occurs, a
new edition of the standard is published. The most recent edition of ECMA-262 is edition 3, released in
December of 1999. The first edition of ECMA-262 was essentially the same as Netscape’s JavaScript 1.1
with all browser-specific code removed, but with a few changes. First, ECMA-262 required support

for the Unicode Standard (to support multiple languages). Second, it required that objects be platform-
independent (Netscape’s JavaScript 1.1 actually had different implementations of objects, such as the
Date object, depending on the platform). This was a major reason why JavaScript 1.1 and 1.2 did not
conform to the first edition of ECMA-262.

The second edition of ECMA-262 was largely editorial in nature. The standard was updated in order to
get into strict agreement with ISO/IEC-16262 and didn’t feature any additions, changes, or omissions.
ECMAScript implementations typically don’t use the second edition as a measure of conformance.

The third edition of ECMA-262 was the first real update to the standard. It provides updates to string
handling, the definition of errors, and numeric outputs. It also adds support for regular expressions, new
control statements, try...catch exception handling, and small changes to better prepare the standard for
internationalization. To many, this marked the arrival of ECMAScript as a true programming language.

What does ECMAScript conformance mean?
In ECMA-262, the definition of ECMAScript conformance is laid out. A scripting language must sub-
scribe to four basic tenets:
0 A conforming implementation must support all “types, values, objects, properties, functions,
and program syntax and semantics” (ECMA-262, p. 1) as they are described in ECMA-262.

QO A conforming implementation must support the Unicode Character Standard.

QO A conforming implementation may add “additional types, values, objects, properties, and func-
tions” that are not specified in ECMA-262. ECMA-262 describes these additions as primarily
new objects or new properties of objects not given in the specification.

QO A conforming implementation may support “program and regular expression syntax” that are
not defined in ECMA-262 (meaning that the built-in regular expression support is allowed to be
altered and extended).

All implementations of ECMAScript must be in agreement with these criteria.

What Is JavaScript?

ECMAScript support in Web browsers

Netscape Navigator 3.0 shipped with JavaScript 1.1 in 1996. That same JavaScript 1.1 specification was
then submitted to the ECMA as a proposal for a new standard. With JavaScript’s explosive popularity,
Netscape was very happy to start developing version 1.2. One problem: ECMA hadn’t yet accepted
Netscape’s proposal.

Alittle after Netscape Navigator 3.0 was released, Microsoft introduced Internet Explorer 3.0. This ver-
sion of IE shipped with JScript 1.0 (Microsoft’s name for its JavaScript implementation), which was sup-
posed to be equivalent to JavaScript 1.1. However, because of undocumented and improperly replicated
features, JScript 1.0 fell far short of JavaScript 1.1.

Netscape Navigator 4.0 was shipped in 1997 with JavaScript 1.2 before the first edition of ECMA-262
was finalized; ECMA-262 was accepted and standardized later that year. As a result, JavaScript 1.2 is not
compliant to the first edition of ECMAScript, even though ECMAScript was supposed to be based on
JavaScript 1.1.

The next update to JScript occurred in Internet Explorer 4.0 with version JScript 3.0 (version 2.0 was
released in Microsoft’s Internet Information Server version 3.0 but was never included in a browser).
Microsoft put out a press release touting JScript 3.0 as the first truly ECMA-compliant scripting language
in the world. At that time, ECMA-262 hadn’t yet been finalized, so JScript 3.0 suffered the same fate as
JavaScript 1.2: It did not comply with the final ECMAScript standard.

Netscape opted to update its JavaScript implementation in Netscape Navigator 4.06. JavaScript 1.3
brought Netscape into full compliance with ECMAScript Edition 1. Netscape added support for the
Unicode standard and made all objects platform-independent while keeping the features that were intro-
duced in JavaScript 1.2.

When Netscape released its source code to the public as the Mozilla project, it was anticipated that
JavaScript 1.4 would be shipped with Netscape Navigator 5.0. However, a radical decision to completely
redesign the Netscape code from the bottom up threw a monkey wrench into the works. JavaScript 1.4
was only released as a server-side language for the Netscape Enterprise Server and never made it into a
Web browser.

Today, all popular Web browsers comply with the third edition of ECMA-262. The following table lists
ECMAScript support in the most popular Web browsers:

Browser ECMAScript Compliance
Netscape Navigator 2.0 -

Netscape Navigator 3.0 -

Netscape Navigator 4.0-4.05 -

Netscape Navigator 4.06—4.79 Edition 1

Netscape 6.0+ (Mozilla 0.6.0+) Edition 3

Internet Explorer 3.0 -

Internet Explorer 4.0 -

Table continued on following page

5

Chapter 1

Browser ECMAScript Compliance
Internet Explorer 5.0 Edition 1
Internet Explorer 5.5+ Edition 3
Opera 6.0-7.1 Edition 2
Opera 7.2+ Edition 3
Safari 1.0+/Konqueror ~2.0+ Edition 3

The Document Object Model (DOM)

The Document Object Model (DOM) is an application programming interface (API) for HTML as well as
XML. The DOM maps out an entire page as a document composed of a hierarchy of nodes. Each part of
an HTML or XML page is a derivative of a node. Consider the following HTML page:

<html>
<head>
<title>Sample Page</title>
</head>
<body>
<p>Hello World!</p>
</body>
</html>

This code can be diagrammed into a hierarchy of nodes using the DOM (see Figure 1-3).

html

Sample Page

Hello World!

:
i

Figure 1-3

What Is JavaScript?

By creating a tree to represent a document, the DOM allows developers an unprecedented level of con-
trol over its content and structure. Nodes can easily be removed, added, and replaced by using the
DOM APL

Why the DOM is necessary

With Internet Explorer 4.0 and Netscape Navigator 4.0 each supporting different forms of Dynamic
HTML (DHTML), developers for the first time could alter the appearance and content of a Web page
without reloading it. This represented a tremendous step forward in Web technology, but also a huge
problem. Netscape and Microsoft each went its own way in developing DHTML, thus ending the period
when Web developers could write a single HTML page that could be accessed by any Web browser.

It was decided that something had to be done to preserve the cross-platform nature of the Web. The fear
was that, if someone didn’t rein in Netscape and Microsoft, the Web would develop into two distinct fac-
tions that were exclusive to targeted browsers. It was then that the World Wide Web Consortium (W3C),
the body charged with creating standards for Web communication, began working on the DOM.

DOM levels

DOM Level 1 became a W3C recommendation in October of 1998. It consisted of two modules: the DOM
Core, which provided a way to map the structure of an XML-based document to allow for easy access to
and manipulation of any part of a document, and the DOM HTML, which extended the DOM Core by
adding HTML-specific objects and methods.

Note that the DOM is not JavaScript-specific, and indeed has been implemented in numerous other lan-
guages. For Web browsers, however, the DOM has been implemented using ECMAScript and now
makes up a large part of the JavaScript language.

Whereas DOM Level 1’s only goal was to map out the structure of a document, DOM Level 2’s aims
were much broader. This extension to the original DOM added support for mouse and user interface
events (long supported by DHTML), ranges, traversals (methods to iterate over a DOM document), and
support for Cascading Style Sheets (CSS) through object interfaces. The original DOM Core introduced
in Level 1 was also extended to include support for XML namespaces.

DOM Level 2 introduced several new modules of the DOM to deal with new types of interfaces:

O DOM Views — describes interfaces to keep track of the various views of a document (that is,

the document before CSS styling and the document after CSS styling)

Q DOM Events — describes interfaces for events

Q DOM Style — describes interfaces to deal with CSS-based styles

Q DOM Traversal and Range — describes interfaces to traverse and manipulate a document tree
DOM Level 3 further extends the DOM with the introduction of methods to load and save documents in
a uniform way (contained in a new module called DOM Load and Save) as well as methods to validate a

document (DOM Validation). In Level 3, the DOM Core is extended to support all of XML 1.0, including
XML Infoset, XPath, and XML Base.

Chapter 1

When reading about the DOM, you may come across references to DOM Level 0. Note that there is no
standard called DOM Level 0; it is simply a reference point in the history of the DOM (DOM Level 0 is
considered to be the original DHTML supported in Internet Explorer 4.0 and Netscape Navigator 4.0).

Other DOMs

Aside from the DOM Core and DOM HTML interfaces, several other languages have had their own
DOM standards published. The languages are XML-based and each DOM adds methods and interfaces
unique to that language:

0 Scalable Vector Graphics (SVG) 1.0
Q Mathematical Markup Language (MathML) 1.0
Q Synchronized Multimedia Integration Language (SMIL)

Additionally, other languages have developed their own DOM implementations, such as Mozilla’s XML
User Interface Language (XUL). However, only the languages in the preceding list are standard recom-
mendations from W3C.

DOM support in Web browsers

The DOM was already a standard for some time before Web browsers started implementing it. Internet
Explorer took first stab in version 5.0, but it actually didn’t have any realistic DOM support until version
5.5, when it implemented most of DOM Level 1. Internet Explorer hasn’t introduced new DOM function-
ality since that time.

For Netscape, no DOM support existed until Netscape 6 (Mozilla 0.6.0) was introduced. To date, Mozilla
has the best support for the DOM, implementing all of Level 1, nearly all of Level 2, and some parts of
Level 3. (The goal of the Mozilla development team was to build a 100% standards-compliant browser,
and their work paid off.)

Latecomers such as Opera, which didn’t add DOM support until version 7.0, and Safari, which has
implemented most of DOM Level 1, are mostly on par with Internet Explorer 5.5; and in some cases,
they exceed it. However, all the browsers are still a distant second to Mozilla as far as DOM support
goes. The following table shows DOM support for popular browsers:

Browser DOM Compliance

Netscape Navigator 1.0-4.x -

Netscape 6.0+ (Mozilla 0.6.0+) Level 1, Level 2, Level 3 (partial)
Internet Explorer 2.0-4.x -

Internet Explorer 5.0 Level 1 (minimal)

Internet Explorer 5.5+ Level 1 (almost all)

Opera 1.0-6.0 -

Opera 7.0+ Level 1 (almost all), Level 2 (partial)
Safari 1.0+/Konqueror ~2.0+ Level 1

What Is JavaScript?

The Browser Object Model (BOM)

The Internet Explorer 3.0 and Netscape Navigator 3.0 browsers feature a Browser Object Model (BOM)
that allows access and manipulation of the browser window. Using the BOM, developers can move the
window, change text in the status bar, and perform other actions that do not directly relate to the page
content. What makes the BOM truly unique, and often problematic, is that it is the only part of a
JavaScript implementation that has no related standard.

Primarily, the BOM deals with the browser window and frames, but generally any browser-specific
extension to JavaScript is considered to be a part of the BOM. Such things include:

Q The capability to pop up new browser windows.
The capability to move, resize, and close browser windows.
The navigator object, which provides detailed information about the Web browser.
The location object, which gives detailed information about the page loaded in the browser.
The screen object, which gives detailed information about the user’s screen resolution.

Support for cookies.

U 00 uUJ oo

Internet Explorer extends the BOM to include the ActiveXObject class, which can be used to
instantiate ActiveX objects through JavaScript.

Because no standards exist for the BOM, each browser has its own implementation. There are some de
facto standards, such as having a window object and a navigator object, but each browser defines its own
properties and methods for these and other objects. Chapter 5, “JavaScript in the Browser,” goes into
more detail about the implementation differences.

Summary

This chapter introduced JavaScript as a client-side scripting language for Web browsers. You learned
about the various parts that make up a complete JavaScript implementation:
Q ECMAScript, the core of JavaScript, describes the language syntax and basic objects.

Q The Document Object Model (DOM) describes methods and interfaces for working with the
content of a Web page.

Q The Browser Object Model (BOM) describes methods and interfaces for interacting with the

browser.

Additionally, you explored the history of JavaScript to gain an understanding of how various parts of
the language developed and how browsers historically have dealt with the implementation of standards.

|

ECMAScript Basics

Some simple JavaScript functionality is easy to accomplish in the browser. Numerous articles on
the Internet show you how to accomplish what many term “stupid Web tricks” using JavaScript.
These tricks include how to pop up notices to the user, swap images, and create simple games.
Although these are all interesting pieces of functionality to add to Web sites, copying and pasting
code doesn’t provide an understanding of why or how something works. This chapter aims to

provide you with a deeper knowledge base about how JavaScript works by examining its core,
ECMAScript.

As described in the previous chapter, ECMAScript provides JavaScript with syntax, operators, and
basic objects necessary to complete common programming tasks.

Syntax

Developers familiar with languages such as Java, C, and Perl will find ECMAScript syntax easy to
pick up because it borrows syntax from each. Java and ECMAScript have several key syntax fea-
tures in common, as well as some that are completely different.

The basic concepts of ECMAScript are the following:

O Everything is case-sensitive. Just as with Java, variables, function names, operators, and
everything else is case-sensitive, meaning that a variable named test is different from
one named Test.

0 Variables are loosely typed. Unlike Java and C, variables in ECMAScript are not given a
specific type. Instead, each variable is defined using the var operator and can be initial-
ized with any value. This enables you to change the type of data a variable contains at any
point in time (although you should avoid doing so whenever possible). Some examples:

var color = "red";
var num = 25;
var visible = true;

Ch

apter 2

Q End-of-line semicolons are optional. Java, C, and Perl require that every line end with a semi-
colon (;) to be syntactically correct; ECMAScript allows the developer to decide whether or not
to end a line with a semicolon. If the semicolon is not provided, ECMAScript considers the end
of the line as the end of the statement (similar to Visual Basic and VBScript), provided that this
doesn’t break the semantics of the code. Proper coding practice is to always include the semi-
colons because some browsers won’t run properly without them, but according to the letter of
the ECMAScript standard, both of the following lines are proper syntax:

var testl = "red"
var test2 = "blue";

QO Comments are the same as in Java, C, and Perl. ECMAScript borrowed its comments from
these languages. There are two types of comments: single-line and multiline. The single-line
comments begin with two forward-slashes (//), whereas multiline comments begin with a
forward-slash and asterisk (/*) and end with an asterisk followed by a forward-slash (* /).

//this is a single-line comment

/* this is a multi-
line comment */

O Braces indicate code blocks. Another concept borrowed from Java is the code block. Code
blocks are used to indicate a series of statements that should be executed in sequence and are
indicated by enclosing the statements between an opening brace ({) and a closing brace (}).
For example:

if (testl == "red") {
testl = "blue";
alert(testl);

}

If you are interested in the specifics of ECMAScript’s grammar, The ECMAScript Language Specification
(ECMA-262) is available for download from ECMA'’s Web site, at www.ecma-international.org.

Variables

12

As I mentioned, variables in ECMAScript are defined by using the var operator (short for variable), fol-
lowed by the variable name, such as:

var test = "hi";
In this example, the variable test is declared and given an initialization value of "hi" (a string).
Because ECMAScript is loosely typed, the interpreter automatically creates a string value for test

without any explicit type declaration. You can also define two or more variables using the same var
statement:

var test = "hi", test2 = "hola";

ECMAScript Basics

The previous code defines the variable test to have a value of "hi" and the variable test2 to have a
value of "hola". Variables using the same var statement don’t have to be of the same type, however, as
shown in the following:

var test = "hi", age = 25;

This example defines test (yet again) in addition to another variable named age that is set to the value
of 25. Even though test and age are two different data types, this is perfectly legal in ECMAScript.

Unlike Java, variables in ECMAScript do not require initialization (they are actually initialized behind
the scenes, which I discuss later). Therefore, this line of code is valid:

var test;

Also unlike Java, variables can hold different types of values at different times; this is the advantage of
loosely typed variables. A variable can be initialized with a string value, for instance, and later on be set
to a number value, like this:

var test = "hi";

alert (test); //outputs "hi"
//do something else here

test = 55;

alert (test); //outputs "55"

This code outputs both the string and the number values without incident (or error). As mentioned pre-
viously, it is best coding practice for a variable to always contain a value of the same type throughout
its use.

In terms of variables names, a name must follow two simple rules:

Q The first character must be a letter, an underscore (_), or a dollar sign ($).

Q All remaining characters may be underscores, dollar signs, or any alphanumeric characters.
All the following variable names are legal:

var test;
var S$Stest;
var $1;

var _Stes$t2;

Of course, just because variable names are syntactically correct doesn’t mean you should use them.
Variables should adhere to one of the well-known naming conventions:

Q Camel Notation — the first letter is lowercase and each appended word begins with an upper-
case letter. For example:

var myTestValue = 0, mySecondTestValue = "hi";

13

Chapter 2

Q Pascal Notation — the first letter is uppercase and each appended word begins with an upper-
case letter. For example:

var MyTestValue = 0, MySecondTestValue = "hi";
QO Hungarian Type Notation — prepends a lowercase letter (or sequence of lowercase letters) to

the beginning of a Pascal Notation variable name to indicate the type of the variable. For exam-
ple, i means integer and s means string in the following line:

var iMyTestValue = 0, sMySecondTestValue = "hi";

The following table list prefixes for defining ECMAScript variables with Hungarian Type Notation.
These prefixes are used throughout the book to make sample code easier to read:

Type Prefix Example
Array a avalues
Boolean b bFound
Float (Number) £ fvalue
Function fn fnMethod
Integer (Number) i ivalue
Object o oType
Regular Expression re rePattern
String s sValue
Variant (can be any type) v vvalue

Another interesting aspect of ECMAScript (and a major difference from most programming languages)
is that variables don’t have to be declared before being used. For example:

var sTest = "hello ";
sTest2 = sTest + "world";
alert (sTest2); //outputs "hello world"

In the previous code, sTest is declared with a string value of "hello". The next line uses a variable
named sTest2 to create a concatenation of sTest and the string "wor1d". The variable sTest2 hasn’t
been defined using the var operator; it has just been inserted as if it has already been declared.

When the ECMAScript interpreter sees an identifier that hasn’t been declared, it creates a global variable
with the given name of the identifier and initializes it with the value specified. This is a handy feature of
the language, but it can also be dangerous if you don’t keep track of variables closely. Best practice is
always to declare all variables as you would with other programming languages (for more information
on why you should always declare variables, see Chapter 19, “Deployment Issues”).

14

ECMAScript Basics

Keywords

ECMA-262 describes a set of keywords that ECMAScript supports. These keywords indicate beginnings
and/or endings of ECMAScript statements. By rule, keywords are reserved and cannot be used as vari-
able or function names. Here is the complete list of ECMAScript keywords:

break else new var
case finally return void
catch for switch while
continue function this with
default if throw

delete in try

do instanceof typeof

If you use a keyword as a variable or function name, you will probably be greeted with an error message
like this: “Identifier expected.”

Reserved Words

ECMAScript also defines a number of reserved words. The reserved words are, in a sense, words that are
reserved for future use as keywords. Because of this, reserved words cannot be used as variable or func-
tion names. The complete list of reserved words in ECMA-262 Edition 3 is as follows:

abstract enum int short
boolean export interface static

byte extends long super

char final native synchronized
class float package throws

const goto private transient
debugger implements protected volatile
double import public

If you use a reserved word as a variable or function name, more than likely you will not receive an
error...until a future browser implements one of them. Then the word will be considered a keyword,
and you will get a keyword error.

Primitive and Reference Values

In ECMAScript, a variable can hold one of two types of values: primitive values and reference values.

Q

Q

Primitive values are simple pieces of data that are stored on the stack, which is to say that their
value is stored directly in the location that the variable accesses.

Reference values, on the other hand, are objects that are stored in the heap, meaning that the value
stored in the variable location is a pointer to a location in memory where the object is stored.

15

Chapter 2

When a value is assigned to a variable, the ECMAScript interpreter must decide if it is a primitive or ref-
erence value. To do this, the interpreter tries to determine if the value is one of the ECMAScript primitive
types: Undefined, Null, Boolean, Number, or String. Because each one of these primitive types takes up a
fixed amount of space, it can be stored in the small memory area known as the stack. Doing so allows for
quick look up of variable values.

In many languages, strings are considered a reference type and not a primitive type because a string can
vary in length. ECMAScript breaks from this tradition.

If the value is a reference, then space is allocated on the heap. Because a reference value’s size can vary, it
cannot be placed on the stack because it would reduce the speed of variable lookup. Instead, the value
placed in the variable’s stack space is an address of a location in the heap where the object is stored. This
address does have a fixed size; so storing it in the stack has no negative effect on variable performance
(Figure 2-1).

Stack Heap
number(11) (object)
/ (object)
boolean(true)

(object)
ull (object)
(object)

address(0)

string("test")

Figure 2-1

Primitive Types

As mentioned previously, ECMAScript has five primitive types: Undefined, Null, Boolean, Number, and
String. ECMA-262 defines the term type as a set of values, and each of the primitive types defines a range
of values it can contain as well as literal representations of that type. To determine if a value is in the
range of values for a particular type, ECMAScript provides the typeof operator. This operator can be
used to determine if a value represents a primitive type and, if so, which primitive type it represents.

The typeof operator

The typeof operator takes one parameter: the variable or value to check. For example:

16

ECMAScript Basics

var sTemp = "test string";
alert (typeof sTemp) ; //outputs "string"
alert (typeof 95); //outputs "number"

Calling typeof on a variable or value returns one of the following values:

Q "undefined" if the variable is of the Undefined type.
QO "boolean" if the variable is of the Boolean type.
QO "number" if the variable is of the Number type.
Q "string" if the variable is of the String type.

a

"object" if the variable is of a reference type or of the Null type.

You may wonder why the typeof operator returns “object” for a value that is nul1l.
This was actually an error in the original JavaScript implementation that was then
copied in ECMAScript. Today, it is rationalized that null is considered a place-
holder for an object, even though, technically, it is a primitive value.

The Undefined type

As previously mentioned, the Undefined type has only one value, undefined. When a variable is
declared and not initialized, it is given the value of undefined by default.

var oTemp;

The previous line of code declares a variable named oTemp, which has no initialization value. This vari-
able is given a value of undefined, which is the literal representation of the Undefined type. You can
test that the variable is equal to the literal yourself by running this code snippet:

var oTemp;
alert (oTemp == undefined) ;

This code displays an alert with the word " true", indicating that these two values are indeed equal.
You can also use the typeof operator to show that the variable has a value of undefined.

var oTemp;
alert (typeof oTemp) ; //outputs "undefined"

Note that a variable having the value of undefined is different from a value being undefined. However,
the typeof operator doesn’t actually distinguish between the two. Consider the following:

var oTemp;

//make sure this variable isn't defined
//var oTemp?2;

//try outputting

17

Chapter 2

alert (typeof oTemp) ; //outputs "undefined"
alert (typeof oTemp2); //outputs "undefined"

The previous code outputs "undefined" for both variables, even though only one of them (oTemp2) is
undefined. If you try to use oTemp2 with any operator other than typeof, it causes an error because
operators can only be applied to defined variables. For example, this causes an error:

//make sure this variable isn't defined
//var oTemp2;

//try outputting
alert (oTemp2 == undefined); //causes error

The value undefined is also returned when a function doesn’t explicitly return a value, as in the
following:

function testFunc() {
//leave the function blank
}

alert (testFunc() == undefined); //outputs "true"

The Null type

Another type with just one value, the Null type, has only the special value null, which is also its literal.
The value undefined is actually a derivative of the value null, so ECMAScript defines them as equal to
each other.

alert (null == undefined); //outputs "true"

Even though the values are both true, they are considered to have different meanings. Whereas
undefined is the value assigned when a variable is declared and not initialized, nul1l is the value used
to represent an object that doesn’t exist (which I touched upon briefly in the discussion of the typeof
operator). If a function or method is supposed to return an object, it usually returns null when the
object isn’t found.

The Boolean type

The Boolean type is one of the most frequently used in the language. It has two values, true and false
(which are also the two Boolean literals). Even though false isn’t equal to 0, 0 is converted to false
when necessary, making it safe to use either in a Boolean statement.

var bFound = true;
var bLost = false;

The Number type

The most unique type defined in ECMA-262 is the Number type. The Number type can represent both
32-bit integer and 64-bit floating-point values. A Number type literal is considered any number entered

18

ECMAScript Basics

directly (not accessed from another variable). For example, the following line of code declares a variable
to hold an integer value, which is defined by the literal 55:

var iNum = 55;
Integers can also be represented as either octal (base 8) or hexadecimal (base 16) literals. For an octal lit-
eral, the first digit must be a zero (0), and the following digits can be any octal digit (0 through 7), as in
this line of code:

var iNum = 070; //070 is equal to 56 in decimal

To create a hexadecimal literal, the first digit must be a zero (0) followed by the letter x, followed by any
number of hexadecimal digits (0-9 and A-F). The digits may be in uppercase or lowercase. For example:

var iNum = O0x1f; //0x1f is equal to 31 in decimal
var iNum2 = OxAB; //0xAB is equal to 171 in decimal

Even though integers can be represented as octal and hexadecimal literals, all mathe-
matical operations return decimal results.

To define a floating-point value, you must include a decimal point and one digit after the decimal point
(for instance, use 1.0 not 1.). This is considered a floating-point number literal. Example:

var fNum = 5.0;

The interesting thing about this form of floating-point literal is that it is actually stored as a string until
it’s needed for calculation.

For very large or very small numbers, floating-point values can be represented using e-notation. In
e-notation, a number is represented by digits (including decimal digits), followed by an e (or an E),
followed by the number of times to multiply it by 10. Confused? Here’s an example:

var fNum = 3.125e7;

This notation represents the number 31250000. You can get this value by converting the e-notation to a
calculation: 3.125 x 107, which is exactly equal to 3.125 x 10 x 10 x 10 x 10 x 10 x 10 x 10.

E-notation can also be used to represent very small numbers, such as 0.00000000000000003, which can be
written as 3e-17 (here, 10 is raised to the —17 power, meaning that you will actually be dividing by 10 17
times). ECMAScript, by default, converts any floating-point number with six or more leading zeros into
e-notation.

Floating-point values are stored in a 64-bit IEEE 754 format, meaning that decimal
values can have up to 17 decimal places. After that, the values are truncated, result-
ing in small mathematical errors.

19

Chapter 2

A few special values are also defined as part of the Number type. The first two are Number . MAX_VALUE
and Number . MIN_VALUE, which define the outer bounds of the Number value set. All ECMAScript
numbers must fall between these two values, without exception. A calculation can, however, result in

a number that does not fall in between these two numbers.

When a calculation results in a number greater than Number . MAX_VALUE, it is assigned a value of
Number . POSITIVE_INFINITY, meaning that it has no numeric value anymore. Likewise a calculation
that results in a number less than Number . MIN_VALUE is assigned a value of Number . NEGATIVE_
INFINITY, which also has no numeric value. If a calculation returns an infinite value, the result cannot
be used in any further calculations.

There is actually a special value for infinity named (you guessed it) Infinity. Number.POSITIVE
INFINITY has a value of Infinity, whereas Number . NEGATIVE_INFINITY has a value of
-Infinity.

Because an infinite number can be positive or negative, a method can be used to determine if a number
is finite (instead of testing for each infinite number separately). The isFinite () method can be called
on any number to ensure that the number isn’t infinite. For example:

var iResult = iNum* some_really_ large_number;
if (isFinite(iResult)) {

alert ("Number is finite.");
} else {

alert ("Number is infinite.");

}

The final special number value is NaN, which stands for Not @ Number. NaN is an odd special value. In
general, this occurs when conversion from another type (String, Boolean, and so on) fails. For example,
trying to convert the word blue into a number value will fail because there is no numeric equivalent. Just
like the infinity values, NaN cannot be used in mathematical calculations. Another oddity of NaN is that it
is not equal to itself, meaning that the following will return false:

alert (NaN == NaN) ; //outputs "false"

For this reason, it is not recommended to use the NaN value itself. Instead, the function isNaN () will do
the job quite nicely:

alert (isNaN("blue")); //outputs "true"
alert (isNaN("123")); //outputs "false"

The String type

20

The String type is unique in that it is the only primitive type that doesn’t have a definite size. A string
can be used to store zero or more Unicode characters, represented by 16-bit integers (Unicode is an inter-
national character set that is discussed later in this book).

Each character in a string is given a position, starting with the first character in position 0, the second
character in position 1, and so on. This means that the position of the final character in a string is always
the length of the string minus 1 (see Figure 2-2).

ECMAScript Basics

The string "hello!" has a length of 6.

h

e I | o] !

Position O
Figure 2-2

1 2 3 4 5

String literals are specified by using either double quotes (“) or single quotes (*). This differs from Java,
where double quotes are used to specify strings and single quotes are used to specify characters. However,
because ECMAScript has no character type, it is permissible to use either notation. For example, the follow-
ing two lines are valid:

var sColorl
var sColor2

"blue";
'blue’;

The string type also encompasses several character literals, which should be very familiar to Java, C, and
Perl developers. The following table lists the ECMAScript character literals:

Literal Meaning

\n Newline

\t Tab

\b Backspace

\r Carriage return

\f Formfeed

\\ Backslash

\’ Single quote

\” Double quote

\Onnn A character represented by octal code nnn (where n is an
octal digit 0-7)

\xnn A character represented by hexadecimal code nn (where
n is a hexadecimal digit 0-F)

\unnnn A Unicode character represented by hexadecimal code
nnnn (where n is a hexadecimal digit 0-F)

Conversions

One of the most important features of any programming language is the capability to convert between
types, and ECMAScript provides developers with a number of easy conversion routines. Most types
contain methods that provide for simple conversion, and several global methods are available for more
complex conversion. In either case, type conversion is a short, one-step process in ECMAScript.

21

Chapter 2

Converting to a string

22

The interesting thing about ECMAScript primitive values for Booleans, numbers, and strings is that they
are pseudo-objects, meaning that they actually have properties and methods. For example, to get the
length of a string, you can do the following;:

var sColor = "blue";
alert(sColor.length) ; //outputs "4"

Even though the value "blue" is a primitive string, it still has a 1ength property holding the size of
the string. To that end, the three main primitive values, Booleans, numbers, and strings, all have a
toString () method to convert their value to a string.

You may be asking, “Isn’t it ridiculously redundant to have a toString () method for a string?” Yes,
it is. But ECMAScript defines all objects, whether they are pseudo-objects representing primitive values
or full-fledged objects, to have a toString () method. Because the string type falls in the category of
pseudo-object, it also must have a toString () method.

The Boolean toString () method simply outputs the string "true" or "false", depending on the
value of the variable:

var bFound = false;
alert (bFound. toString()) ; //outputs "false"

The Number toString () method is unique in that it has two modes: default and radix mode. In default
mode, the tostring () method simply outputs the numeric value in an appropriate string (whether that
is integer, floating point, or e-notation), like this:

var iNuml = 10;

var fNum2 = 10.0;

alert (iNuml.toString()); //outputs "10"
alert (fNum2.toString()) ; //outputs "10"

In default mode, the Number’s toString () method always returns the decimal representation of the
number, regardless of how you originally specified it. Therefore, numbers specified by octal or hexadeci-
mal literals are output as decimal.

When you use the Number’s toString () method in radix mode, it is possible to output the number
using a different base, such as 2 for binary, 8 for octal, or 16 for hexadecimal. The radix is just a fancy

name for the base to convert to, and it is specified as an argument to the toString () method:

var iNum = 10;

alert (iNuml.toString(2)); //outputs "1010"
alert (iNuml.toString(8)); //outputs "12"
alert (iNuml.toString(16)); //outputs "A"

In the previous example, the number 10 is output in three different ways: binary, octal, and hexadecimal.
This functionality can be very useful for dealing with numbers in HTML, which use hexadecimal repre-
sentations for each color.

ECMAScript Basics

Calling toString(10) on a number is the same as calling toString(); they both return the deci-
mal equivalent of the number.

Converting to a number

ECMAScript provides two methods for converting non-number primitives into numbers: parseInt ()
and parseFloat (). As you may have guessed, the former converts a value into an integer whereas the
latter converts a value into a floating-point number. These methods only work properly when called on
strings; all other types return NaN.

Both parselInt () and parseFloat () look at a string carefully before deciding what its numeric value
should be. The parseInt () method starts with the character in position 0 and determines if this is a
valid number; if it isn’t, the method returns NaN and doesn’t continue. If, however, the number is valid,
the method goes on to the character in position 1 and does the same test. This process continues until

a character isn’t a valid number, at which point parseInt () takes the string (up to that point) and
converts it into a number. For example, if you want to convert the string "1234blue" to an integer,
parselInt () would return a value of 1234 because it stops processing one it reaches the character b.
Any number literal contained in a string is also converted correctly, so the string "0xa" is properly con-
verted into the number 10. However, the string "22.5" will be converted to 22, because the decimal
point is an invalid character for an integer. Some examples:

var iNuml = parselInt("1234blue"); //returns 1234
var iNum2 = parselInt ("0xA"); //returns 10
var iNum3 = parseInt("22.5"); //returns 22
var iNum4 = parselnt("blue"); //returns NaN

The parseInt () method also has a radix mode, allowing you to convert strings in binary, octal, hexa-
decimal, or any other base into an integer. The radix is specified as a second argument to parseInt (),
so a call to parse a hexadecimal value looks like this:

var iNuml = parselInt ("AF", 16); //returns 175
Of course, this can also be done for binary, octal, and even decimal (which is the default mode):
H //returns 2

; //returns 8
) //returns 10

var iNuml = parseInt("10", 2)
var iNum2 = parseInt("10", 8)
var iNum2 = parseInt("10", 10

If decimal numbers contain a leading zero, it’s always best to specify the radix as 10 so that you won't
accidentally end up with an octal value. For example:

var iNuml = parseInt("010"); //returns 8
var iNum2 = parseInt("010", 8); //returns 8
var iNum3 = parseInt("010", 10); //returns 10

In this code, both lines are parsing the string "010" into a number. The first line thinks that the string is
an octal value and parses it the same way as the second line (which specifies the radix as 8). The last line
specifies a radix of 10, so iNum3 ends up equal to 10.

23

Chapter 2

The parseFloat () method works in a similar way to parselInt (), looking at each character starting in
position 0. It also continues until the first invalid character and then converts the string it has seen up to
that point. For this method, however, the decimal point is a valid character the first time it appears. If
two decimal points are present, the second is considered invalid and the parseFloat () method con-
verts the string up until that position. This means that the string "22.34.5" will be parsed into 22.34.

Another difference when using parseFloat () is that the string must represent a floating-point number
in decimal form, not octal or hexadecimal. This method ignores leading zeros, so the octal number 0908
will be parsed into 908, and the hexadecimal number 0xa will return NaN because x isn’t a valid charac-
ter for a floating-point number. There is also no radix mode for parseFloat ().

Some examples of using parseFloat ():

var fNuml = parseFloat("1234blue"); //returns 1234.0
var fNum2 = parseFloat ("OxA"); //returns NaN
var fNum3 = parseFloat("22.5"); //returns 22.5
var fNum4 = parseFloat("22.34.5"); //returns 22.34
var fNum5 = parseFloat("0908"); //returns 908
var fNum6 = parseFloat("blue"); //returns NaN

Type Casting

24

It’s also possible to convert values using a process called type casting. Type casting allows you to access a
specific value as if it were of a different type. Three type casts are available in ECMAScript:

0 Boolean(value) —casts the given value as a Boolean

Q Number (value) — casts the given value as a number (either integer or floating-point)

0 String(value) — casts the given value a string

Casting a value using one of these three functions creates a new value that is a direct conversion of the
original. This can lead to some unexpected results.

The Boolean() type cast returns true when the value is a string with at least one character, a number
other than 0, or an object (discussed in the next section); it returns false when the value is an empty
string, the number 0, undefined, or null. The following code snippet can be used to test type casting
as a Boolean:

var bl = Boolean(""); //false - empty string
var b2 = Boolean("hi"); //true - non-empty string
var b3 = Boolean(100); //true - non-zero number
var b4 = Boolean(null); //false - null
var b5 = Boolean(0); //false - zero

(

var b6 = Boolean(new Object()); //true - object

The Number () type cast works in a manner similar to parseInt () and parseFloat (), except that it
converts the entire value, not just part of it. Remember that parseInt () and parseFloat () only con-
vert up to the first invalid character (in strings), so "4.5.6" becomes "4.5". Using the Number () type
cast, "4.5.6" becomes NaN because the entire string value cannot be converted into a number. If a string
value can be converted entirely, Number () decides whether to use parseInt () or parseFloat (). The
following table illustrates what happens when Number () is used on various values:

ECMAScript Basics

Usage Result
Number (false) 0
Number (true) 1
Number (undefined) NaN
Number (null) 0
Number ("5.5") 5.5
Number ("56") 56
Number ("5.6.7") NaN
Number (new Object()) NaN
Number (100) 100

The last type cast, String (), is the simplest because it can accurately convert any value to a string
value. To execute the type cast, it simply calls the toString () method of the value that was passed in,
which converts 1 to “1”, true to “true”, false to “false”, and so on. The only difference between type cast-
ing as a string and using toString () is that the type cast can produce a string for a null or undefined
value without error:

var sl = String(null); //"null"
var oNull = null;
var s2 = oNull.toString(); //won't work, causes an error

Type casting is very helpful when dealing with the loosely typed nature of ECMAScript, although you
should ensure that only proper values are used.

Reference Types

Reference types are commonly referred to as classes, which is to say that when you have a reference
value, you are dealing with an object. The vast number of predefined ECMAScript reference types are
discussed throughout the book. For now, the discussion focuses around the reference types that are
closely related to the primitive types just discussed.

ECMAScript doesn’t actually have classes in the traditional sense. In fact, the word “class” doesn’t
appear in ECMA-262 except to explain that there are no classes. ECMAScript defines “object defini-
tions” that are logically equivalent to classes in other programming languages. This book chooses to use
the term “class” because it is more familiar to most developers.

Objects are created by using the new operator and providing the name of the class to instantiate. For
example, this line creates an instance of the Object class:

var o = new Object();

25

Chapter 2

This syntax is similar to Java, although ECMAScript requires parentheses to be used only if there are one
or more parameters. If there are no parameters, such as in the previous line of code, then the parentheses
can be safely omitted:

var o = new Object;

Chapter 3, “Object Basics,” contains a more in-depth look at objects and their behaviors. This section
focuses on those reference types that have primitive equivalents.

Although the parentheses aren’t required, it’s always best to include them in order
to avoid confusion.

The Object class

The Object class itself isn’t very useful, but you should understand it before moving on to the other
classes. Why is that? Because the Object class in ECMAScript is similar to java.lang.0Object in Java:
It is the base class from which all ECMAScript classes inherit. All the properties and methods of the
Object class are also present in the other classes, and so to understand the Object class is to understand
all the others better.

The object class has the following properties:

O constructor — Areference value (pointer) to the function that created the object. For the
Object class, this points to the native Object () function.

QO prototype — Areference value to the object prototype for this object. Prototypes are discussed
further in Chapter 3. For the all classes, this returns an instance of Object by default.

The Object class also has several methods:

0O hasOwnProperty (property) — Determines if a given property exists for the object. The
property must be specified as a string (for example, o . hasOwnProperty ("name")).

0 isPrototypeOf (object) — Determines if the object is a prototype of another object.

QO propertyIsEnumerable (property) — Determines if a given property can be enumerated by

using the for. . .in statement (discussed later in this chapter).

a toString () — Returns a primitive string representation of the object. For the Object class,
this value is undefined in ECMA-262 and, as such, differs in each implementation.

Q valueOf () — Returns the most appropriate primitive value of this object. For many classes,
this returns the same value as toString ().

Each of the properties and methods listed previously are designed to be overridden by other classes.

26

ECMAScript Basics

The Boolean class

The Boolean class is the reference type for the Boolean primitive type. To create a Boolean object, you
need only pass in a Boolean value as a parameter:

var oBooleanaobject = new Boolean(true);

Boolean objects override the valueOf () method of the Object class to return a primitive value of
either true or false; the toString () method is also overridden to return a string of “true" or
"false" when called. Unfortunately, not only are Boolean objects of little use in ECMAScript, they can
actually be rather confusing.

The problem typically occurs when trying to use Boolean objects in Boolean expressions. For example:

var oFalseObject = new Boolean(false);
var bResult = oFalseObject && true; //outputs true

In this code, a Boolean object is created with a value of false. That same object is then ANDed with
the primitive value true. In Boolean math, false AND true is equal to false. However, in this line of
code it is the oFalseObject being evaluated, not its value (false). As discussed earlier, all objects are
automatically converted to true in Boolean expressions, so oFalseObject actually is given a value of
true in the expression. Then, true ANDed with true is equal to true.

Although you should understand that the Boolean object is available, it’s best to use
Boolean primitives only to avoid the problems mentioned in this section.

The Number class

As you might have assumed, the Number class is the reference type for the Number primitive type. To
create a Number object, do the following;:

var oNumberObject = new Number (55);

You may recognize the Number class from earlier in this chapter, where the special number values are
discussed (such as Number . MAX_VALUE). All the special values are static properties of the Number class.

To get the Number primitive value for a number object, simply use the valueOf () method:
var iNumber = oNumberObject.valueOf () ;
Of course, the Number class also has a toString () method, which was discussed at length in the section

on conversions. Aside from the standard methods inherited from the Object class, the Number class has
several methods specifically for working with number values.

27

Chapter 2

28

The toFixed () method returns a string representation of a number with a specified number of decimal
points. For example:

var oNumberObject = new Number (99);
alert (oNumberObject.toFixed(2)) ; //outputs "99.00"

Here, the toFixed () method is given an argument of 2, which indicates how many decimal places
should be displayed. As a result, the method returns the string "99.00", filling out the empty decimal
places with 0s. This method can be very useful for applications dealing with currency. The toFixed ()
method can represent numbers with 0 to 20 decimal places; other values may cause errors.

Another method related to formatting numbers is the toExponential () method, which returns a string
with the number formatted in e-notation. Just as with toFixed (), toExponential () accepts one argu-
ment, which is the number of decimal places to output. For example:

var oNumberObject = new Number (99);
alert (oNumberObject.toExponential (1)) ; //outputs "9.9e+1"

This code outputs "9.9e+1" as the result, which you may remember from the earlier explanation, repre-
sents 9.9 x 10%. The question is, what if you don’t know the proper format to use for a number: fixed or
exponential? That’s where the toPrecision () method comes in.

The toPrecision () method returns either the fixed or exponential representation of a number, depend-
ing on which makes the most sense. This method takes one argument, which is the total number of digits
to use to represent the number (not including exponents). Example:

var oNumberObject = new Number (99);
alert (oNumberObject.toPrecision(1l)); //outputs "le+2"

In this example, the task is to represent the number 99 with a single digit, which results in "1e+2", oth-
erwise known as 100. Yes, toPrecision () rounded the number to get as close as possible to the actual
value. Because you can’t represent 99 with any fewer than 2 digits, this rounding had to occur. If, how-

ever, you want to represent 99 using two digits, well, that’s easy:

var oNumberObject = new Number (99);
alert (oNumberObject.toPrecision(2)); //outputs "99"

Of course the output is "99", because that is the exact representation of the number. But what if you
specify more than the number of digits needed?

var oNumberObject = new Number (99);
alert (oNumberObject.toPrecision(3)); //outputs "99.0"

In this case, toPrecision (3) is exactly equivalent to toFixed (1), outputting "99.0" as the result.

The toFixed(), toExponential (), and toPrecision () methods round up or down to accu-
rately represent a number with the correct number of decimal places.

ECMAScript Basics

Similar to the Boolean object, the Number object is important, but it should be used
sparingly in order to avoid potential problems. Whenever possible, you should use
numeric primitives instead.

The String class

The String class is the object representation of a String primitive and is created in the following manner:
var oStringObject = new String("hello world");

Both valueOf () and toString () return the String primitive value for a String object:
alert (oStringObject.valueOf () == oStringObject.toString()); //outputs "true"

If you run this code, the output is "true", indicating that the values are indeed equal.
The string class is one of the more complicated reference types in ECMAScript. As such, this section
focuses only on the basic functionality of the String class. More advanced functionality is split into
suitable topics throughout the book.

The string class has one property, 1ength, which gives the number of characters in the string:

var oStringObject = new String("hello world");
alert (oStringObject.length) ; //outputs "11"

This example outputs "11", the number of characters in "hello world". Note that even if the string
contains a double-byte character (as opposed to an ASCII character, which uses just one byte), each char-
acter is still counted as one.

The string class also has a large number of methods. The first two, charat () and charCodeat (),
have to do with accessing the individual characters in the string. As described in the section on String
primitives, the first character is in position 0, the second is in position 1, and so on. Both these methods
accept one argument, the position of the character to act on. The charat () method returns a string con-
taining the character in that position:

var oStringObject = new String("hello world");
alert (oStringObject.charAt (1)) ; //outputs "e"

The character in position 1 of "hello world" is "e", so calling charat (1) returns "e". If instead of the
actual character you want the character code, then calling charCodeat () is the appropriate choice:

var oStringObject = new String("hello world");
alert (oStringObject.charCodeAt (1)) ; //outputs "101"

This example outputs "101", which is the character code for the lowercase e character.

29

Chapter 2

30

Next up is the concat () method, which is used to concatenate one or more strings to the primitive
value of the string object. This method actually returns a String primitive value as a result and leaves
the original String object intact:

var oStringObject = new String("hello ");
var sResult = oStringObject.concat ("world");
alert (sResult) ; //outputs "hello world"
alert (oStringObject) ; //outputs "hello "

The result of calling the concat () method in the previous code is "hello world", whereas the con-
tents of the String object remains "hello ". For this reason, it is much more common to use the add
operator (+) to concatenate strings because it more logically indicates the actual behavior:

var oStringObject = new String("hello ");
var sResult = oStringObject + "world";

alert (sResult) ; //outputs "hello world"
alert (oStringObject) ; //outputs "hello "

So far, you have seen methods of concatenating strings and accessing individual characters in strings,
but what if you are unsure if a character exists in a particular string? That’s where the index0f () and
lastIndexOf () methods are useful.

Both the index0f () and lastIndexOf () methods return the position of a given substring within
another string (or —1 if the substring isn’t found). The difference between the two is that the indexOf ()
method begins looking for the substring at the beginning of the string (character 0) whereas the
lastIndexOf () method begins looking for the substring at the end of the string. For example:

var oStringObject = new String("hello world");
alert (oStringObject.indexOf ("o")); //outputs "4"
alert (oStringObject.lastIndexOf ("o")); //outputs "7"

Here, the first occurrence of the string "o" occurs at position 4, which is the "o" in "hello". The last
occurrence of the string "o" is in the word "wor1d", at position 7. If there is only one occurrence of "o"
in the string, then index0f () and lastIndexOf () return the same position.

The next method is 1ocaleCompare (), which helps sort string values. This method takes one argument,
the string to compare to, and it returns one of three values:

Q If the String object should come alphabetically before the string argument, a negative number
is returned (most often this is -1, but it is up to each implementation as to the actual value).
Q If the String object is equal to the string argument, 0 is returned.

Q If the String object should come alphabetically after the string argument, a positive number is
returned (most often this is 1, but once again, this is implementation-specific).

Example:

var oStringObject = new String("yellow");

alert (oStringObject.localeCompare ("brick")); //outputs "1"
alert (oStringObject.localeCompare("yellow")) ; //outputs "0"
alert (oStringObject.localeCompare ("zoo")); //outputs "-1"

ECMAScript Basics

In this code, the string "yellow" is compared to three different values, "brick", "yellow", and "zoo".
Because "brick" comes alphabetically before "yellow", localCompare () returns 1; "yellow" is
equal to "yellow", so localCompare () returns 0 for that line; "zoo" comes after "yellow", so
localCompare () returns —1. Once again, because the values are implementation-specific, it is best to
use localCompare () in this way

var oStringObjectl = new String("yellow");
var oStringObject2 = new String("brick");
var iResult = sTestString.localeCompare ("brick");
if (iResult < 0) {

alert (oStringObjectl + " comes before " + oStringObject2);
} else if (iResult > 0) {

alert (oStringObjectl + " comes after " + oStringObject2);
} else {

alert ("The two strings are equal");

)
By using this sort of construct, you can be sure that the code works correctly in all implementations.

The unique part of localeCompare () is that an implementation’s locale (country and language) indi-
cates exactly how this method operates. In the United States, where English is the standard language for
ECMAScript implementations, localCompare () is case-sensitive, determining that uppercase letters
come alphabetically after lowercase letters. However, this may not be the case in other locales.

ECMAScript provides two methods for creating string values from a substring: slice () and sub-
string (). Both methods return a substring of the string they act on, and both accept either one or two
arguments. The first argument is the position where capture of the substring begins; the second argu-
ment, if used, is the position before which capture is stopped (which is to say that the character at this
position is not included in the returned value). If the second argument is omitted, it is assumed that the
ending position is the length of the string. Just as with the concat () method, slice() and sub-
string () do not alter the value of the String object itself: They simply return a primitive String value
as the result, leaving the String object unchanged.

var oStringObject = new String("hello world");

alert (oStringObject.slice(3)); //outputs "lo world"
alert (oStringObject.substring(3)); //outputs "lo world"
alert (oStringObject.slice(3, 7)); //outputs "lo w"
alert (oStringObject.substring(3,7)); //outputs "lo w"

In this example, slice () and substring () are used in the same manner and, ironically enough, return
the same values. When given just one argument, 3, both methods return "1o world", as the second "1*
in "hello" is in position 3. When given two arguments, 3 and 7, both methods return "1o w*" (the "o"
in "world" is in position 7, so it is not included). Why have two methods that do the exact same thing?
Truthfully, the methods aren’t identical, but they differ only in how they deal with arguments that are
negative numbers.

For the slice () method, a negative argument is treated as the length of the string plus the negative
argument; the substring () method treats a negative argument as 0 (which means that it is ignored).

For example:

var oStringObject= new String("hello world");
alert (oStringObject.slice(-3)); //outputs "rld"

31

Chapter 2

alert (oStringObject.substring(-3)); //outputs "hello world"
alert (oStringObject.slice(3, -4)); //outputs "lo w"
alert (oStringObject.substring(3,-4)); //outputs "hel"

Here, you see the main difference between slice () and substring (). When you call each with one
argument, -3, slice () returns "r1d" while substring () returns "hello world". This occurs
because slice (-3) translates into slice (7) for the string "hello world" whereas substring (-3)
translates into substring (0). Likewise, the difference is apparent when using the parameters 3 and -4.
For the slice () method, this translates into s1ice (3, 7), the same as the previous example, which
returns "lo w" as the result. However the substring () method interprets this as substring(3,0),
which is essentially substring (0, 3) because substring () always considers the smaller number as
the start and the larger number as the end. As a result, substring (3, -4) returns "hel". The bottom
line here is to be clear about how you are using these two methods.

The last set of methods to be discussed involves case conversion. Four methods perform case conver-
sion: toLowerCase (), toLocaleLowerCase (), toUpperCase (), and toLocaleUpperCase (). The
uses for these methods are pretty obvious from their names — two convert the string into all lowercase
and two convert the string into all uppercase. The toLowerCase () and toUpperCase () methods are
the originals, modeled after the same methods in java.lang.String; the toLocaleLowerCase () and
toLocaleUpperCase () methods are intended to be implemented based on a particular locale (in the
same way localeCompare () is intended to be used). In many locales, the locale-specific methods are
identical to the generic ones; however, a few languages apply special rules to Unicode case conversion
(such as Turkish), and this necessitates using the locale-specific methods for proper conversion.

var oStringObject= new String("Hello World");

alert (oStringObject.toLocaleUpperCase()); //outputs "HELLO WORLD"
alert (oStringObject.toUpperCase()) ; //outputs "HELLO WORLD"
alert (oStringObject.toLocaleLowerCase()); //outputs "hello world"
alert (oStringObject.toLowerCase()) ; //outputs "hello world"

This code outputs "HELLO WORLD" for both toLocaleUpperCase () and toUpperCase (), just as
"hello world" is output for both toLocaleLowerCase () and toLowerCase (). Generally speaking,
if you do not know the language in which the code will be running, it is safer to use the locale-specific
methods.

Remember, all the methods and properties for the String class also apply to String primitive values
because they are pseudo-objects.

The instanceof operator

32

One of the problems with using reference types to store values has been the use of the typeof operator,
which returns "object" no matter what type of object is being referenced. To provide a solution,
ECMAScript introduced another Java operator: instanceof.

The instanceof operator works in a similar way to the typeof operator: It identifies the type of object
you are working with. Unlike typeof, instanceof requires the developer to explicitly ask if an object is
of a particular type. For example:

var oStringObject = new String("hello world");
alert (oStringObject instanceof String); //outputs "true"

ECMAScript Basics

Here, the code asks, “Is variable s an instance of the class String?” Yes it is, so the resultis "true".

Although not as versatile as typeof, instanceof does offer enough help for the cases when typeof
returns "object".

Operators

ECMA-262 describes a set of operators that can be used to manipulate variables. The operators range
from mathematical operators (such as addition and subtraction) and bitwise operators to relational
operators and equality operators. Any time a native action is performed on a value, it is considered
an operator.

Unary operators

Unary operators take only one parameter: the object or value to operate on. They are the simplest opera-
tors in ECMAScript.

delete

The delete operator erases a reference to an object property or method that was previously defined.
Example:

var o = new Object;

o.name = "Nicholas";

alert (o.name) ; //outputs "Nicholas"
delete o.name;

alert (o.name) ; //outputs "undefined"

In this example, the name property is deleted, which means that it is forcibly de-referenced and set
to undefined (which you will remember is the same value a variable has when it is created and not
initialized).

The delete operator cannot be used to delete properties and methods that are not defined by the devel-
oper. For instance, the following line causes an error:

delete o.toString;

Even though tostring is a valid name of a method, this code line causes an error because the
toString () method is native to ECMAScript and not developer-defined.
void

The void operator returns undefined for any value. This is typically used to avoid outputting a value
that shouldn’t be output, such as when calling a JavaScript function from an HTML <a> element. To do
this properly, the function cannot return a valid value; otherwise the browser erases the page and dis-
plays only the result of the function. For example:

Click Me

33

Chapter 2

If you place this line of code into an HTML page, and click the link, you see " [Object] " printed on the
screen (Figure 2-3). This occurs because window. open () returns a reference to the newly opened win-
dow (this and other methods of the window are discussed further in Chapter 5, “JavaScript in the
Browser”). That object is then converted to a string for display.

&1 javascript:window.open('about:blank’) -

File Edit View Favorites Tools Hqg
- 1) - .')
€L D - 1% !£L| (8l | /5

[obiject]

Figure 2-3

To avoid this, use the window. open () call with the void operator:
Click Me

This makes the window.open () call return undefined, which is not a valid value and is not displayed
in the browser window. Remember, functions that have no return value actually return undefined.

Prefix increment/decrement

Two operators taken directly from C (and Java) are prefix increment and prefix decrement. Prefix
increment, which adds one to a number value, is indicated by placing two plus signs (++) in front of a
variable:

var iNum = 10;
++1Num

The second line increments iNum to 11. This is effectively equal to:

var iNum = 10;
iNum = iNum + 1;

Likewise, the prefix decrement subtracts one from a value. The prefix decrement is indicated by two
minus signs (- -) placed before the variable:

var iNum = 10;
--iNum;

In this example, the second line decreases the value of iNum to 9.

When you use prefix operators, note that the increment/decrement takes place before the expression is
evaluated. Consider the following example:

34

ECMAScript Basics

var iNum = 10;

—--iNum;

alert (iNum) ; //outputs "9"
alert (--iNum) ; //outputs "8"
alert (iNum) ; //outputs "8"

The second line decrements num, and the third line displays the result ("9"). The fourth line displays
num once again, but this time the prefix decrement is applied in the same statement, which results in
the number "8" being displayed. To prove that all decrements are complete, the fifth line once again

outputs "8".

The prefix increment and decrement are equal in terms of order of precedence when evaluating a mathe-
matical expression and, therefore, are evaluated left to right. For instance:

var iNuml = 2;
var iNum2 = 20;
var iNum3 = --iNuml + ++iNum2; //equals 22
var iNum4 = iNuml + iNum2; //equals 22

In the previous code, iNum3 is equal to 22 because the expression evaluates to 1 + 21. The variable
iNum4 is also equal to 22 and also adds 1 + 21.

Postfix increment/decrement

Two operators, also taken directly from C (and Java), are the postfix increment and postfix decrement.
They also add one to a number value, as indicated by the two plus signs (++) placed after a variable:

var iNum = 10;
iNum++

As you might expect, postfix decrement subtracts one from a value and is indicated by two minus signs
(—-) placed after the variable:

var iNum = 10;
iNum--;

The second line of code decreases the value of iNum to 9.

Unlike the prefix operators, postfix operators increment or decrement after the containing expression is
evaluated. Consider the following example:

var iNum = 10;

iNum--;

alert (iNum) ; //outputs "9"
alert (iNum--) ; //outputs "9"
alert (iNum) ; //outputs "8"

Just as in the prefix example, the second line decrements iNum, and the third line displays the result (9).
The fourth line displays num once again, but this time the postfix decrement is applied in the same state-
ment. However, because the decrement doesn’t happen until after the expression is evaluated, this alert
also displays the number 9. When the fifth line is executed, the alert displays 8, because the postfix
decrement was executed after line 4 but before line 5.

35

Chapter 2

The postfix increment and decrement are also equal in terms of order of precedence when evaluating a
mathematical expression, and they are both evaluated left to right. For instance:

var iNuml = 2;
var iNum2 = 20;
var iNum3 = iNuml-- + iNum2++; //equals 22
var iNum4 = iNuml + iNum2; //equals 22

In the previous code, iNum3 is equal to 22 because the expression evaluates to 2 + 20. The variable
iNum4 is also equal to 22, although it evaluates 1 + 21 because the increment and decrement aren’t com-
pleted until after the value of iNum3 has been assigned.

Unary plus and minus

36

The unary plus and minus are familiar symbols to most people and operate the same way in
ECMAScript as they do in high school math. The unary plus essentially has no effect on a number:

var iNum= 25;
iNum = +iNum;
alert (iNum) ; //outputs "25"

In this code, the unary plus is applied to the number 25, which returns the exact same value. Although
unary plus has no effect on numbers, it has an interesting effect on strings: It converts them to numbers.

var sNum = "25";
alert (typeof sNum) ; //outputs "string"
var iNum = +sNum;
alert (typeof iNum); //outputs "number"

This code converts a string representation of 25 into the actual number. When the unary plus operates
on strings, it evaluates strings the same way as parseInt () with one major difference: Unless the string
begins with "0x" (indicating a hexadecimal number), the string is converted as if it were decimal. So
"010" is always 10 when converted using unary plus, however, "0xB" is converted to 11.

The unary minus, on the other hand, negates the value of a number (for example, converting 25
into -25):

var iNum= 25;
iNum = -iNum;
alert (iNum) ; //outputs "-25"

Similar to unary plus, unary minus converts a string into a number with one slight difference: Unary
minus also negates the value. For example:

var sNum = "25";

alert (typeof sNum) ; //outputs "string"
var iNum = -sNum;

alert (iNum) ; //outputs "-25"
alert (typeof iNum); //outputs "number"

ECMAScript Basics

The unary minus converted the string "25" into the number -25 in the previous code (unary minus
also acts the same way as unary plus regarding hexadecimal and decimal values, but it also negates
the value).

Bitwise operators

The following set of operators work on numbers at their very base level, with the 32 bits that represent
them. Before examining these operators, I begin with a more detailed look into integers in ECMAScript.

Integers revisited

ECMAScript integers come in two specific flavors: signed (allowing both positive and negative values)
and unsigned (allowing only positive numbers). In ECMAScript, all integer literals are signed by
default. But what exactly does this mean?

Signed integers use the first 31 bits to represent the numeric value of the integer, whereas the 32nd bit
represents the sign of the number, 0 for positive or 1 for negative. The number values can range from
2147483648 to 2147483647 .

You can store signed integers in binary form in two different ways, one for positive numbers and one for
negative numbers. Positive numbers are stored in true binary format, with each of the first 31 bits repre-
senting a power of 2, starting with the first bit (called bit 0), which represents 2% the second bit (bit 1)
represents 2!, and so on. If any bits are unused, they are filled with Os and essentially ignored. For exam-
ple, the number 18 is represented as shown in Figure 2-4.

The number 18
IOI?IOIOIOIOIOIO|OIOIO|0|0|0|0|0|OIOIOIOIOIOIOIOIOIOI?I1|0|0|1|0|

T
Bit 31 Filler Bit O
Figure 2-4

The binary version of 18 uses only the first five bits, which are the significant bits for this number. When
converting a number into a binary string (as discussed earlier), you see only the significant bits:

var iNum = 18;
alert (iNum.toString(2)); //outputs "10010"

This code outputs only "10010" instead of the whole 32-bit representation. The other bits really aren’t
important because using just these five bits makes possible to determine the decimal value (Figure 2-5).

37

Chapter 2

38

1100|120

(2%x1) + (23x0) + (22x0) + (21x1) + (29%0)

16 + O + O + 2 + O

18
Figure 2-5

Negative numbers are also stored in binary code, but in a format called two’s complement. The two’s com-
plement of a number is calculated in three steps:

1. Determine the binary representation of the non-negative version (for example, to find -18, first
determine the binary representation of 18).

2. Find the one’s complement of the number, which essentially means that every 0 must be
replaced with 1 and vice versa.

3. Add1tothe one’s complement.

To determine the binary representation for —18, you must first take the binary representation of 18,
which is:

0000 0000 0000 0000 0000 0000 0001 0010
Next, take the one’s complement, which is the inverse:
1111 1111 1111 1211 1211 1111 1110 1101

Finally, add 1 to the one’s complement:

1111 1111 1111 1111 1111 1111 1110 1101

1111 1111 1111 1111 1111 1111 1110 1110

So, the binary equivalent of —18 is 1111 1111 1111 1111 1111 1111 1110 1110. Keep in mind that the devel-
oper has no access to bit 31 when dealing with signed integers.

The interesting thing about negative integers is that conversion to a binary string does not show the
two’s complement form. Instead, ECMAScript outputs the standard binary code for the number’s abso-
lute value preceded by a minus sign. For example:

var iNum = -18;
alert (iNum.toString(2)) ; //outputs "-10010"

This code outputs only "-10010" instead of the two’s complement in order to protect bit 31 from being
accessed. To put it simply, ECMAScript aims to deal with integers in such a simple way that developers
need not spend any time worrying about their usage.

ECMAScript Basics

Unsigned integers, on the other hand, treat the final bit just like the other bits. In this mode, the 32nd bit
doesn’t represent the sign of the number but rather the value 2% Because of this extra bit, unsigned inte-
gers range in value from 0 to 4294967295. For numbers less than or equal to 2147483647, unsigned inte-
gers look the same as positive signed integers; numbers greater than 2147483647 require the use of bit 31
(which is always 0 in a signed positive integer). Unsigned integers only return the significant bits when
they are converted into a binary string.

Remember, all integer literals are stored as signed integers by default. Unsigned integers can only be cre-
ated by using one of the ECMAScript bitwise operators.

Bitwise NOT
The bitwise NOT is represented by a tilde (~) and is one of just a few ECMAScript operators related to

binary mathematics. The bitwise NOT is a three-step process:
1. The operand is converted to a 32-bit number.
2. Thebinary form is converted into its one’s complement.

3. The one’s complement is converted back to a floating-point number.

Example:
var iNuml = 25; //25 is equal to 00000000000000000000000000011001
var iNum2 = ~iNuml; //convert to 1111111111111111111111112111100110
alert (iNum2) ; //outputs "-26"

The bitwise NOT essentially negates a number and then subtracts 1 from it, so 25 becomes —26. Really,
the same effect can be achieved by doing this:

var iNuml = 25;
var iNum2 = -iNuml - 1;
alert (iNum2) ; //outputs "-26"

Bitwise AND

The bitwise AND operator is indicated by the ampersand (&) and works directly on the binary form of
numbers. Essentially, bitwise AND lines up the bits in each number and then, using the following rules,
performs an AND operation between the two bits in the same position:

Bit from First Number Bit from Second Number Result
1 1 1
1 0 0
0 1 0
0 0 0

For example, if you wanted to AND the numbers 25 and 3 together, the code looks like this:

39

Chapter 2

var iResult = 25 & 3;
alert (iResult) ; //outputs "1"

The result of a bitwise AND between 25 and 3 is 1. Why is that? Take a look:

NS}
ul
1

0000 0000 0000 0000 0000 0000 0001 1001
3 = 0000 0000 0000 0000 0000 0000 0000 0011

AND = 0000 0000 0000 0000 0000 0000 0000 0001

As you can see, only one bit (bit 0) contains a 1 in both 25 and 3. Because of this, every other bit of the
resulting number is set to 0, making the result equal to 1.

Bitwise OR

The bitwise OR operator is indicated by the pipe (|) and also works directly on the binary form of num-
bers. Essentially, bitwise OR follows these rules when evaluating bits:

Bit from First Number Bit from Second Number Result
1 1 1
1 0 1
0 1 1
0 0 0

Using the same example as for bitwise AND, if you want to OR the numbers 25 and 3 together, the code
looks like this:

var iResult = 25 | 3;
alert (iResult) ; //outputs "27"

The result of a bitwise OR between 25 and 3 is 27:

25 = 0000 0000 0000 0000 0000 0000 0001 1001
3 = 0000 0000 0000 0000 0000 0000 0000 0011

OR = 0000 0000 0000 0000 0000 0000 0001 1011

As you can see, four bits contain 1 in either number, so these are passed through to the result. The binary
code 11011 is equal to 27.

Bitwise XOR

The bitwise XOR operator is indicated by a caret (*) and, of course, works directly on the binary form of
numbers. Bitwise XOR is different from bitwise OR in that it returns 1 only when exactly one bit has a
value of 1. Here is the truth table:

40

ECMAScript Basics

Bit from First Number Bit from Second Number Result
1 1 0
1 0 1
0 1 1
0 0 0

To XOR the numbers 25 and 3 together, use the following code:

var iResult = 25 ~ 3;
alert (iResult) ; //outputs "26"

The result of a bitwise XOR between 25 and 3 is 26:

[N}
Ul
I

0000 0000 0000 0000 0000 0000 0001 1001
2 = 0000 0000 0000 0000 0000 0000 0000 0011

XOR = 0000 0000 0000 0000 0000 0000 0001 1010

As you can see, four bits contain 1 in either number, so these are passed through to the result. The binary
code 11010 is equal to 26.

Left shift

The left shift is represented by two less-than signs (<<). It shifts all bits in a number to the left by the
number of positions given. For example, if you take the number 2 (which is equal to 10 in binary) and
shifted it 5 bits to the left, you end up with 64 (which is equal to 1000000 in binary):

var i0ld = 2; //equal to binary 10
var iNew = i01d << 5; //equal to binary 1000000 which is decimal 64

Note that when the bits are shifted, five empty bits remain to the right of the number. The left shift fills

these bits with the value in the 32nd bit (the sign bit) to make the result a complete 32-bit number
(Figure 2-6).

"Secret" sign bit The number 2

[oToToTo o oo oo o oo oo o o o oo o o o o o oo o o o o] o]

The number 2 shifted to the left 5 bits (the number 64)

lojofoJofojofofofojofojofofofofofo]ofofofo]ofofofofs]o]o]o]ofo]o]
]

Padded with zeros

Figure 2-6

41

Chapter 2

Note that left shift preserves the sign of the number it’s operating on. For instance, if -2 is shifted to the
left by 5 spaces, it becomes —64, not positive 64. “But isn’t the sign stored in the 32nd bit?” you ask. Yes it
is, but that is behind the scenes of ECMAScript. The developer can never have access to that 32nd bit
directly. Even printing out a negative number as a binary string shows the negative sign (for instance,

-2 is displayed as -10 instead of 10000000000000000000000000000010).

Signed right shift

The signed right shift is represented by two greater-than signs (>>) and shifts all bits in a 32-bit number to
the right while preserving the sign (positive or negative); signed right shift is the exact opposite of left
shift. For example, if 64 is shifted to the right five bits, it becomes 2:

var i0ld
var iNew

64; //equal to binary 1000000
iold >> 5; //equal to binary 10 with is decimal 2

Once again, when bits are shifted, the shift creates empty bits. This time, the empty bits occur at the left
of the number, but after the sign bit (see Figure 2-7). Once again, ECMAScript fills these empty bits with
the value in the sign bit to create a complete number.

"Secret" sign bit The number 64

<I) o|o[of[o]o]o]o]o]o|o|o|o|o|o]o]o]o][o]o]o]o]o]o|o|1]oo]0]0]0]0]

The number 64 shifted to the right 5 bits (the number 2)
olofofofofoJofofofofofofofofofofofoofoJofofofofofofofofofo]1]0]
]

Padded with zeros
Figure 2-7

Unsigned right shift

42

The unsigned right shift is represented by three greater-than signs (>>>) and shifts all bits in an
unsigned 32-bit number to the right. For numbers that are positive, the effect is the same as a signed
right shift. Using the same example as for the signed right shift example, if 64 is shifted to the right five
bits, it becomes 2:

var i01d = 64; //equal to binary 1000000
var iNew = iOld >>> 5; //equal to binary 10 with is decimal 2

For numbers that are negative, however, something quite different happens. You see, the unsigned right
shift operator fills all empty bits with the value contained in the 32nd bit. For positive numbers, this bit

is 0; so the empty bits are filled with zero. For negative numbers, however, this bit is 1, meaning that all

empty bits are filled with 1. Because the result of unsigned right shift is an unsigned 32-bit number, you
end up with a very large number. For example, if you shift -64 to the right by five bits, you end up with
2147483616. How does this happen?

ECMAScript Basics

First, look at the true 32-bit representation of -64. To do so, you need to create an unsigned version of the
number, which can be attained by using unsigned right shift with a bit count of 0:

var iUnsigned64 = 64 >>> 0;

Then, to get the actual bit representation, use the toString () method of the Number type with a
radix of 2:

alert (iUnsigned64.toString(2));

This yields a value of 11111111111111111111111111000000, which is the two’s complement representation of
—64 for a signed integer, but it is equal to 4294967232 as an unsigned integer. For this reason, use caution
with the unsigned right shift operator.

Boolean operators

Almost as important as equality operators, Boolean operators are what make a programming language
function. Without the capability to test relationships between two values, statements such as if. . .else
and loops wouldn’t be useful. There are three Boolean operators: NOT, AND, and OR.

Logical NOT
The logical NOT operator in ECMAScript is the same as in C and Java, indicated by an exclamation
point (!). Unlike logical OR and logical AND operators, the logical NOT always returns a Boolean value.
The logical NOT operator behaves in the following way:

Q If the operand is an object, false is returned.

If the operand is the number 0, true is returned.

If the operand is any number other than 0, false is returned.

If the operand is null, true is returned.

If the operand is NaN, true is returned.

U 00 oo

If the operand is undefined, an error occurs.
This operator is typically used in control loops (discussed later):

var bFound = false;
var 1 = 0;

while (!bFound) {

if (avalues[i] == vSearchvalue) ({
bFound = true;

} else {
i++;

}

43

Chapter 2

In this example, a Boolean variable (found) keeps track of the success of a search. When the item in
question is located, found is set to true, which causes ! found to equal false, meaning that execution
will escape the while loop.

The logical NOT operator is also useful in determining the Boolean equivalent of an ECMAScript vari-
able. In order to do this, you use two logical NOT operators in a row. The first NOT returns a Boolean
value no matter what operand it is given. The second NOT negates that Boolean value and so gives the
true Boolean value of a variable.

var bFalse = false;

var sBlue = "blue";

var iZero = 0;

var iThreeFourFive = 345;
var oObject = new Object;

document .write("The Boolean value of bFalse is " + (!!bFalse));
document .write("
The Boolean value of sBlue is " + (!!sBlue));
document .write("
The Boolean value of iZero is " + (!!iZero));
document .write("
The Boolean value of iThreeFourFive is " +
(!!'iThreeFourFive)) ;

document.write("
The Boolean value of oObject is " + (!!oObject));

Running this example yields the following output:

The Boolean value of bFalse is false

The Boolean value of sBlue is true

The Boolean value of iZero is false

The Boolean value of iThreeFourFive is true
The Boolean value of oObject is true

Logical AND

44

The logical AND operator in ECMAScript is indicated by the double ampersand (&&):
var bTrue = true;
var bFalse = false;

var bResult = bTrue && bFalse;

Logical AND behaves as described in the following truth table:

Operand 1 Operand 2 Result
true true true
true false false
false true false
false false false

Logical AND can be used with any type of operands, not just Boolean values. When either operand is
not a primitive Boolean, logical AND does not always return a Boolean value:

ECMAScript Basics

If one operand is an object and one is a Boolean, the object is returned.
If both operands are objects, the second operand is returned.
If either operand is null, null is returned.

If either operand is NaN, NaN is returned.

U 00U o

If either operand is undefined, an error occurs.

Just as in Java, logical AND is a short-circuited operation, meaning that if the first operand determines
the result, the second operand is never evaluated. In the case of logical AND, if the first operand is false,
no matter what the value of the second operand, the result can’t be equal to true. Consider the following
example:

var bTrue = true;
var bResult = (bTrue && bUnknown) ; //error occurs here
alert (bResult); //this line never executes

This code causes an error when the logical AND is evaluated because the variable bunknown is unde-
fined. The value of variable bTrue is true, so the logical AND operator continued on to evaluate vari-
able bunknown. When it did, an error occurred because bunknown is undefined and, therefore, cannot
be used in a logical AND operation. If this example is changed so that a is set to false, the error won't
occur:

var bFalse = false;
var bResult = (bFalse && bUnknown) ;
alert (bResult) ; //outputs "false"

In this code, the script writes out the string " false", the value returned by the logical AND operator.
Even though the variable bunknown is undefined, it never gets evaluated because the first operand is
false. You must always keep in mind short-circuiting when using logical AND.

Logical OR
The logical OR operator in ECMAScript is the same as in Java, using the double pipe (| |):
var bTrue = true;

var bFalse = false;
var bResult = bTrue || bFalse;

Logical OR behaves as described in the following truth table:

Operand 1 Operand 2 Result
true true true
true false true
false true true
false false false

45

Chapter 2

Just like logical AND, if either operand is not a Boolean, logical OR will not always return a Boolean
value:
Q If one operand is an object and one is a Boolean, the object is returned.
Q If both operands are objects, the first operand is returned.
Q If both operands are null, null is returned.
Q If either operand is NaN, NaN is returned.
Q If either operand is undefined, an error occurs.

Also like the logical AND operator, the logical OR operator is short-circuited. In this case, if the first
operand evaluates to true, the second operand is not evaluated. For example:

var bTrue = true;
var bResult = (bTrue || bUnknown);
alert (bResult) ; //outputs "true"

As with the previous example, the variable c is undefined. However, because the variable bTrue is set
to true, variable bunknown is never evaluated and thus the output is "true". If the value of bTrue is
changed to false, an error occurs:

var bFalse = false;
var bResult = (bTrue || bUnknown) ; //error occurs here
alert (bResult) ; //this line never executes

Multiplicative operators

This next section deals with the three multiplicative operators: multiple, divide, and modulus. These
operators work in a manner similar to their counterparts in languages such as Java, C, and Perl, but they
also include some automatic type conversions you need to be aware of.

Multiply

The multiply operator is represented by an asterisk (*) and is used, as one might suspect, to multiply two
numbers. The syntax is the same as in C:

var iResult = 34 * 56;
However, the multiply operator also has some unique behaviors when dealing with special values:
Q If the operands are numbers, regular arithmetic multiply is performed, meaning that two posi-

tives or two negatives equal a positive, whereas operands with different signs yield a negative.
If the result is too high or too low, the result is either Infinity or —Infinity.

Q If either operand is NaN, the result is NaN.

(]

If Infinity is multiplied by 0, the result is NaN.

Q If Infinity is multiplied by any number other than 0, the result is either Infinity or
—-Infinity, depending on the sign of the second operand.

Q If Infinity is multiplied by Infinity, the resultis Infinity.

46

ECMAScript Basics

Divide
The divide operator is represented by a slash (/) and divides the first operand by the second operand:
var iResult = 66 / 11;

The divide operator, like the multiply operator, has special behaviors for special values:

Q If the operands are numbers, regular arithmetic division is performed, meaning that two posi-
tives or two negatives equal a positive, whereas operands with different signs yield a negative.
If the result is too high or too low, the result is either Infinity or— Infinity.

If either operand is NaN, the result is NaN.
If Infinity is divided by Infinity, the result is NaN.
If Infinity is divided by any number, the resultis Infinity.

Division of a non-infinite number by 0 always equals NaN.

o 0 U oo

If Infinity is divided by any number other than 0, the result is either Infinity or —
Infinity, depending on the sign of the second operand.

Modulus
The modulus (remainder) operator is represented by a percent sign (%) and is used in the following way:
var iResult = 26 % 5; //equal to 1
Just like the other multiplicative operators, the modulus operator behaves differently for special values:

Q If the operands are numbers, regular arithmetic division is performed, and the remainder of that
division is returned.

If the dividend is Infinity or the divisor is 0, the result is NaN.

If Infinity is divided by Infinity, the result is NaN.

If the divisor is an infinite number, the result is the dividend.

U 0 0 U

If the dividend is 0, the result is 0.

Additive operators

The additive operators, add and subtract, are typically the simplest mathematical operators in program-
ming languages. In ECMAScript, however, a number of special behaviors are associated with each
operator.

Add

The add operator (+) is used just as one would expect:

var iResult = 1 + 2;

47

Chapter 2

Just like the multiplicative operators, additive operators also behave in special ways when dealing with
special values. If the two operands are numbers, they perform an arithmetic add and return the result
according to these rules:

0 If either number is NaN, the result is NaN.
If Infinityisadded to Infinity, the resultis Infinity.
If -Infinityis added to —Infinity, the resultis —Infinity.
If Infinity is added to —Infinity, the result is NaN.

If +0 is added to +0, the result is +0.

U 000 0o

If -0 is added to +0, the result is +0.
0 If -0is added to -0, the result is —0.

If, however, one of the operands is a string, then the following rules are applied:

Q If both operands are strings, the second string is concatenated to the first.

Q If only one operand is a string, the other operand is converted to a string and the result is the
concatenation of the two strings.

For example:

var resultl = 5 + 5; //two numbers

alert (result); //outputs "10"

var result2 =5 + "5"; //a number and a string
)

alert (result //outputs "55"

This code illustrates the difference between the two modes for the add operator. Normally, 5 + 5 equals
10 (a primitive number value), as illustrated by the first two lines of code. However, if one of the operands
is changed to a string, "5", the result becomes "55" (which is a primitive string value) because the first
operand gets translated to "5" as well.

To avoid one of the most common mistakes made in JavaScript, always double check
the data types when using the add operator.

Subtract

The subtract operator (-) is another that is used quite frequently:
var iResult = 2 - 1;

Just like the add operator, the subtract operator has special rules to deal with the variety of type conver-
sions present in ECMAScript:

Q If the two operands are numbers, perform arithmetic subtract and return the result.

Q If either number is NaN, the result is NaN.

48

ECMAScript Basics

If Infinity is subtracted from Infinity, the result is NaN.

If -Infinity is subtracted from —Infinity, the result is NaN.

If -Infinity is subtracted from Infinity, the resultis Infinity.
If Infinity is subtracted from —Infinity, the resultis —Infinity.
If +0 is subtracted from +0, the result is +0.

If -0 is subtracted from +0, the result is —0.

If -0 is subtracted from -0, the result is +0.

U 00U uU 00U

If either of the two operands is not a number, the result is NaN.

Relational operators

The less-than (<), greater-than (>), less-than-or-equal (<=), and greater-than-or-equal (>=) relational oper-
ators perform comparisons between numbers in the same way that you learned in math class. Each of
these operators returns a Boolean value:

//true

var bResultl > 3;
3; //false

5
var bResult2 = 5 <

When a relational operator is used on two strings, however, a different behavior occurs. Many expect
that less-than means “alphabetically before” and greater-than means “alphabetically after,” but this is
not the case. For strings, each of the first string’s character codes is numerically compared against the
character codes in a corresponding location in the second string. After this comparison is complete, a
Boolean value is returned. The problem here is that the character codes of uppercase letters are all lower
than the character codes of lowercase letters, meaning that you can run into situations like this:

var bResult = "Brick" < "alphabet";
alert (bResult) ; //outputs "true"

In this example, the string "Brick" is considered to be less than the string "alphabet " because the let-
ter B has a character code of 66 and letter a has a character code of 97. To force a true alphabetic result,
you must convert both operands into a common case (upper or lower) and then compare:

var bResult = "Brick".toLowerCase() < "alphabet".toLowerCase();
alert (bResult) ; //outputs "false"

Converting both operands to lowercase ensures that "alphabet" is correct identified as alphabetically
before "Brick".

Another sticky situation occurs when comparing numbers that are strings, for example:

var bResult = "23" < "3";
alert (bResult) ; //outputs "true"

This code will output "true" when comparing the string "23" to "3 ". Because both operands are

strings, they are compared by their character codes (the character code for "2 is 50; the character code
for "3 is 51). If, however, one of the operands is changed to a number, the result makes more sense:

49

Chapter 2

var bResult = "23" < 3;
alert (bResult) ; //outputs "false"

Here, the string "23" is converted into the number 23 and then compared to 3, giving the expected
result. Whenever a number is compared to a string, ECMAScript says that the string should be con-
verted into a number and then numerically compared with the other number. This works well for
cases like the previous example, but what if the string can’t be converted into a number? Consider this
example:

var bResult = "a" < 3;
alert (bResult) ;

What would you expect this to output? The letter "a" can’t be meaningfully converted into a number.
After all, if you were to use parseInt () on it, NaN would be returned. As a rule, any relational opera-
tion that contains NaN returns false, so this code also outputs false:

var bResult = "a" >= 3;
alert (bResult) ;

Typically, if two values return false for a less-than operation, they must return true for a greater-than-
or-equal operation, but this is not the case when one number is NaN.

Equality operators

Determining whether two variables are equivalent is one of the most important operations in program-
ming. This is fairly straightforward when dealing with primitive values, but the task gets a little compli-
cated when you take objects into account. To deal with this problem, ECMAScript provides two sets of
operators: equal and not equal to deal with primitive values, and identically equal and not identically
equal to deal with objects.

Equal and not equal

50

The equal operator in ECMAScript is the double equal sign (==), and it returns true if —and only if —
both operands are equal. The not equal operator is the exclamation point followed by an equal sign (! =),
and it returns true if —and only if —two operands are not equal. Both operators do conversions in
order to determine if two operands are equal.

When performing conversions, follow these basic rules:
Q If an operand is a Boolean value, convert it into a numeric value before checking for equality.
A value of false converts to 0; whereas a value of true converts to 1.

Q If one operand is a string and the other is a number, attempt to convert the string into a number
before checking for equality.

Q If one operand is an object and the other is a string, attempt to convert the object to a string
(using the toString () method) before checking for equality.

Q If one operand is an object and the other is a number, attempt to convert the object to a number
before checking for equality.

ECMAScript Basics

The operators also follow these rules when making comparisons:

Q Values of null and undefined are equal.
Q Values of null and undefined cannot be converted into any other values for equality checking.

Q If either operand is NaN, the equal operator returns false and the not equal operator returns
true. Important note: Even if both operands are NaN, the equal operator returns false because,
by rule, NaN is not equal to NaN.

Q If both operands are objects, then the reference values are compared. If both operands point to
the same object, then the equal operator returns true. Otherwise, the two are not equal.

The following table lists some special cases and their results:

Expression Value
null == undefined true
“NaN” == NaN false
== NaN false
NaN == NaN false
NaN !=NaN true
false == 0 true
true == true
true == false
undefined == false
null == false
5”7 ==5 true

Identically equal and not identically equal

The brothers of the equal and not equal operators are the identically equal and not identically equal
operators. These two operators do the same thing as equal and not equal, except that they do not convert
operands before testing for equality. The identically equal operator is represented by three equal signs
(===) and only returns true if the operands are equal without conversion. For example:

var sNum = "55";

var iNum = 55;

alert (sNum == iNum) ; //outputs "true"
alert (sNum === iNum) ; //outputs "false"

In this code, the first alert uses the equal operator to compare the string "55" and the number 55 and
outputs "true". As mentioned previously, this happens because the string "55" is converted to the
number 55 and then compared with the other number 55. The second alert uses the identically equal

51

Chapter 2

operator to compare the string and the number without conversion, and of course, a string isn’t equal to
a number, so this outputs "false".

The not identically equal operator is represented by an exclamation point followed by two equal signs
(!==) and returns true only if the operands are not equal without conversion. For example:

var sNum = "55";

var iNum = 55;

alert (sNum != iNum) ; //outputs "false"
alert (sNum !== iNum) ; //outputs "true"

Here, the first alert uses the not equal operator, which converts the string "55" to the number 55, mak-
ing it equal to the second operand, also the number 55. Therefore, this evaluates to false because the
two are considered equal. The second alert uses the not identically equal operator. It helps to think of
this operation as saying, “is sNum different from iNum?” The answer to this is yes (true), because sNum
is a string and iNum is a number, so they are very different.

Conditional operator

The conditional operator is one of the most versatile in ECMAScript, and it takes on the same form as
in Java:

variable = boolean_expression ? true_value : false value;
This basically allows a conditional assignment to a variable depending on the evaluation of the
boolean_expression. If it’s true, then true_valueis assigned to the variable; if it’s false, then
false_valueis assigned to the variable. For instance:

var iMax = (iNuml > iNum2) ? iNuml : iNum2;
In this example, iMax is to be assigned the number with the highest value. The expression states that if

iNuml is greater than iNum2, iNuml is assigned to iMax. If, however, the expression is false (meaning
that iNum2 is less than or equal to iNum1), iNum2 is assigned to iMax.

Assignment operators

52

Simple assignment is done with the equals sign (=) and simply assigns the value on the right to the vari-
able on the left. For example:

var iNum = 10;

Compound assignment is done with one of the multiplicative, additive, or bitwise shift operators fol-
lowed by an equals sign (=). These assignments are designed as shorthand for such common situations as:

var iNum = 10;
iNum = iNum + 10;

The second line of code can be replaced with a compound assignment:

ECMAScript Basics

var iNum = 10;
iNum += 10;

Compound assignment operators exist for each of the major mathematical operations and a few others
as well:

Q Multiply/Assign (*=)
Divide/Assign (/=)
Modulus/Assign (%=)

Add/ Assign (+=)

Subtract/ Assign (-=)

Left Shift/Assign (<<=)

Signed Right Shift/ Assign (>>=)
Unsigned Right Shift/Assign (>>>=)

U 00 UJ o 00

Comma operator

The comma operator allows execution of more than one operation in a single statement. Example:
var iNuml=1, iNum2=2, iNum3=3;

Most often, the comma operator is used in the declaration of variables.

Statements

ECMA-262 describes several statements for ECMAScript. Essentially, statements define most of the syn-
tax of ECMAScript and, typically, use one or more keywords to accomplish a given task. Statements can
be simple, such as telling a function to exit, or complicated, such as specifying a number of commands to
be executed repeatedly. This section introduces all the standard ECMAScript statements.

The if statement

One of the most frequently used statements in ECMAScript (and indeed, in many languages), is the if
statement. The if statement has the following syntax:

if (condition) statementl else statement2
The condition can be any expression; it doesn’t even have to evaluate to an actual Boolean value.
ECMAScript converts it to a Boolean for you. If the condition evaluates to true, statementl is executed;

if the condition evaluates to false, statement? is executed. Each of the statements can be either a single
line or a code block (a group of code lines enclosed within braces). For example:

53

Chapter 2

if (i > 25)

alert ("Greater than 25."); //one-line statement
else {

alert("Less than or equal to 25."); //block statement

}

It’s considered best coding practice to always use block statements, even if only one
line of code is to be executed. Doing so can avoid confusion about what should be
executed for each condition.

You can also chain if statements together like so:

if (conditionl) statementl else if (condition2) statement2? else statement3

Example:

if (1 > 25) {
alert ("Greater than 25.")
} else if (i < 0) {
alert("Less than 0.");
} else {
alert ("Between 0 and 25, inclusive.");

Iterative statements

Iterative statements, also called loop statements, specify certain commands to be executed repeatedly
until some condition is met. The loops are often used to iterate the values of an array (hence the name)
or to work though repetitious mathematical tasks. ECMAScript provides four types of iterative state-
ments to aid in the process.

do-while

The do-while statement is a post-test loop, meaning that the evaluation of the escape condition is only
done after the code inside the loop has been executed. This means that the body of the loop is always
executed at least once before the expression is evaluated. Syntax:

do {
statement
} while (expression);

For example:
var i = 0;
do {

i += 2;
} while (i < 10);

54

ECMAScript Basics

while

The while statement is a pretest loop. This means the evaluation of the escape condition is done before
the code inside the loop has been executed. Because of this, it is possible that the body of the loop is
never executed. Syntax:

while (expression) statement
For example:
var i = 0;

while (i < 10) {
i += 2;

for

The for statement is also a pretest loop with the added capabilities of variable initialization before
entering the loop and defining postloop code to be entered. Syntax:

for (initialization; expression; post-loop-expression) statement
For example:
for (var i=0; i < iCount; i++){
alert (i);
}
This code defines a variable i that begins with the value 0. The for loop is entered only if the conditional

expression (1 < iCount) evaluates to true, making it possible that the body of the code might not be
executed. If the body is executed, the postloop expression is also executed, iterating the variable 1.

for-in

The for-in statement is a strict iterative statement. It is used to enumerate the properties of an object.
Syntax:

for (property in expression) statement
For example:

for (sProp in window) {
alert (sProp) ;

}
Here, the for-in statement is used to display all the properties of the BOM window object. The method

propertyIsEnumerable (), discussed earlier, is included in ECMAScript specifically to indicate whether
or not a property can be accessed using the for-in statement.

55

Chapter 2

Labeled statements

It is possible to label statements for later use with the following syntax:
label: statement

For example:
start: var iCount = 10;

In this example, the label start can later be referenced by using the break or continue statements.

The break and continue statements

The break and continue statements provide stricter control over the execution of code in a loop. The
break statement exits the loop immediately, preventing any further repetition of the code while the
continue statement exits the current repetition. It does, however, allow further repetition based on
the control expression. For example:

var iNum = 0;

for (var i=1; 1 < 10; 1i++) {

if (1 $ 5 == 0) {
break;
}
iNum++;
}
alert (iNum) ; //outputs "4"

In the previous code, the for loop is to iterate the variable i from 1 to 10. In the body of loop, an i f
statement checks to see if the value of i is evenly divisible by 5 (using the modulus operator). If so, the
break statement is executed and the alert displays " 4", indicating the number of times the loop has
been executed before exiting. If this example is updated to use continue instead of break, a different
outcome occurs:

var iNum = 0;

for (var i=1; 1 < 10; 1i++) {

if (1 $ 5 == 0) {
continue;
}
iNum++;
}
alert (iNum) ; //outputs "8"

Here, the alert displays "8", the number of times the loop has been executed. The total number of times
that the loop can possibly be executed is 9, but when i reaches a value of 5, the continue statement is
executed, causing the loop to skip the expression iNum++ and return to the top.

56

ECMAScript Basics

Both the break and continue statements can be used in conjunction with labeled statements to return
to a particular location in the code. This is typically used when there are loops inside of loops, as in the
following example:

var iNum = 0;

outermost:
for (var i=0; i < 10; i++) {
for (var j=0; j < 10; j++) {
if (1 == 5 && j == 5) {
break outermost;
}

iNum++;
}

alert (iNum) ; //outputs "55"

In this example one label, outermost, indicates the first for statement. Each loop normally executes
10 times a piece, meaning that the iNum++ statement is normally executed 100 times and, consequently,
iNum should be equal to 100 when the execution is complete. The break statement here is given one
argument, the label to break to. Doing this allows the break statement not just to break out of the inner
for statement (using the variable j) but also out of the outer for statement (using the variable 1i).
Because of this, iNum ends up with a value of 55 because execution is halted when both i and j are
equal to 5. The continue statement can also be used in the same way:

var iNum = 0;

outermost:
for (var i=0; i < 10; i++) {
for (var j=0; j < 10; j++) {
if (i == 5 && j == 5) {
continue outermost;
}

iNum++;
}

alert (iNum) ; //outputs "95"

In this case, the continue statement forces execution to continue —not in the inner loop, but in the
outer loop. Because this occurs when j is equal to 5, that means the inner loop misses five iterations,
leaving iNum equal to 95.

As you can tell, using labeled statements in conjunction with break and continue can be powerful,

but this practice can also make debugging code a problem, if it is overused. Make sure to always use
descriptive labels and try not to nest more than a handful of loops.

57

Chapter 2

The with statement

The with statement is used to set the scope of the code within a particular object. Its syntax is the
following;:

with (expression) statement;

For example:

var sMessage = "hello world";
with (sMessage) {
alert (toUpperCase()) ; //outputs "HELLO WORLD"

}

In this code, the with statement is used with a string, so when the toUpperCase () method is called, the
interpreter checks to see if this is a local function. If not, it checks the sMessage pseudo-object to see if
toUpperCase () is a method for it, which it is. The alert then outputs "HELLO WORLD" because the inter-
preter finds the implementation of toUpperCase () on the "hello world" string.

The with statement is a very slow segment of code, especially while the values of
properties are being set. Most of the time, it’s best to avoid using it if possible.

The switch statement

The cousin of the 1 f statement, the switch statement, allows a developer to provide a series of cases for
an expression. The syntax for the switch statement is:

switch (expression) {
case value: statement
break;
case value: statement
break;
case value: statement
break;

case value: statement
break;
default: statement

}
Each case says “if expression is equal to value, execute statement”. The break keyword causes code execu-
tion to jump out of the switch statement. Without the break keyword, code execution falls through the

original case into the following one.

The default keyword indicates what is to be done if the expression does not evaluate to one of the
cases (in effect, it is an else statement).

58

ECMAScript Basics

Essentially, the switch statement prevents a developer from having to write something like this:

if (i == 25)
alert("25");
else if (i == 35)
alert("35");
else if (i == 45)
alert("45");

else

alert ("Other");

The equivalent switch statement is:

switch (1) {
case 25: alert("25");

break;

case 35: alert("35");
break;

case 45: alert("45");
break;

default: alert("Other");

Two big differences exist between the switch statement in ECMAScript and Java. In ECMAScript, the
switch statement can be used on strings, and it can indicate case by nonconstant values:

var BLUE = "blue", RED = "red", GREEN = "green";

switch (sColor) {
case BLUE: alert("Blue");

break;

case RED: alert("Red");
break;

case GREEN: alert("Green");
break;

default: alert("Other");

Here, the switch statement is used on the string sColor, whereas the cases are indicated by using the
variables BLUE, RED, and GREEN, which is completely valid in ECMAScript.

Functions

Functions are the heart of ECMAScript: a collection of statements that can be run anywhere at anytime.

Functions are declared with the keyword function, followed by a set of arguments, and finally by the
code to execute enclosed in braces. The basic syntax is:

function functionName(arg0O, argl,...,argN) {
Statements

}

59

Chapter 2

60

For example:

function sayHi (sName, sMessage) {
alert("Hello " + name + "," + sMessage);

}
This function can then be called by using the function name, followed by the function arguments enclosed
in parentheses (and separated by commas, if there are multiple arguments). The code to call the sayHi ()
function looks like this:

sayHi ("Nicholas", "how are you today?");

This code results in the alert displayed in Figure 2-8.

Microsoft Internet Explorer

! '} Hello Micholas, how are you today?

Figure 2-8

The sayHi () function doesn’t specify a return value, but it requires no special declaration (such as void
is used in Java) to do so. Likewise, a function doesn’t need to explicitly declare a return value type if the
function does indeed return a value. The function need only use the return operator followed by the
value to return:

function sum(iNuml, iNum2) {
return iNuml + iNum2;

}
The value of the sum function is returned and assigned to a variable like this:

var iResult = sum(1,1);
alert (iResult) ; //outputs "2"

Another important concept is that, just as in Java, the function stops executing code after a return state-
ment is executed. Therefore, any code that comes after a return statement is not executed. For example,
the alert in the following function is never displayed:

function sum(iNuml, iNum2) {
return iNuml + iNum?2;
alert (iNuml + iNum2) ; //never reached

It is possible to have more than one return statement in a function, as in this function:

function diff (iNuml, iNum2) {
if (iNuml > iNum2) {

ECMAScript Basics

return iNuml - iNum2;
} else {
return iNum2 - iNuml;

The previous function is designed to return the difference between two numbers. To do so, it must
always subtract the smaller number from the larger, which results in an if statement to determine
which return statement to execute.

If a function doesn’t return a value, it can use the return operator without any parameters to exit a func-
tion at any time. Example:

function sayHi (sMessage) {
if (sMessage == "bye")
return;

{
}

alert (sMessage) ;

}

In this code, the alert will never be displayed if the message is equal to the string "bye".

When a function doesn’t explicitly return a value or uses the return statement with-
out a value, the function actually returns undefined as its value.

No overloading

ECMAScript functions cannot be overloaded. This may come as a surprise, considering ECMAScript
closely resembles other higher-level programming languages that support overloading. You can define
two functions with the same name in the same scope without an error; however, the last function
becomes the one that is used. Consider the following example:

function doAdd (iNum) {
alert (iNum + 100);
}

function doAdd (iNum) {
alert (iNum + 10);
}

doAdd (10) ;
What do you think will be displayed from this code snippet? The alert will show "20", because the sec-

ond doAdd () definition overwrites the first. Although this can be annoying to a developer, you have a
way to work around this limitation by using the arguments object.

61

Chapter 2

The arguments object

Within a function’s code, a special object called arguments gives the developer access to the function’s
arguments without specifically naming them. For example, in the sayHi () function, the first argument
is given the name message. The same value can also be accessed by referencing arguments[0], which
asks for the value of the first argument (the first argument is in position 0, the second is in position 1,
and so on.). Therefore, the function can be rewritten without naming the argument explicitly:

function sayHi() {
if (arguments[0] == "bye") {
return;

}

alert (arguments[0]) ;

}

The arguments object can also be used to check the number of arguments passed into the function by
referencing the arguments. length property. The following example outputs the number of arguments
each time the function is called:

function howManyArgs () {
alert (arguments.length) ;
}

howManyArgs ("string", 45); //outputs "2"
howManyArgs () ; //outputs "0"
howManyArgs (12) ; //outputs "1"

This snippet shows alerts displaying "2", "0", and "1" (in that order). In this way, the arguments object
puts the responsibility on the developer to check the arguments that are passed into a function.

Unlike other programming languages, ECMAScript functions don’t validate the number of arguments
passed against the number of arquments defined by the function; any developer-defined function accepts
any number of arguments (up to 255, according to Netscape’s documentation) without causing an
error. Any missing arguments are passed in as undefined; any excess arguments are ignored.

By using the arguments object to determine the number of arguments passed into the function, it is pos-
sible to simulate the overloading of functions:

function doAdd() {

if (arguments.length == 1) {
alert (arguments[0] + 10);
} else if (arguments.length == 2) {

alert (arguments[0] + arguments[l]);
}
}

doAdd (10) ; //outputs "20"
doAdd (30, 20); //outputs "50"

62

ECMAScript Basics

The function doadd () adds 10 to a number only if there is one argument; if there are two arguments,
they are simply added together and returned. So doAdd (10) outputs "20" whereas doAdd (30,20) out-
puts "50". It's not quite as good as overloading, but it is a sufficient workaround for this ECMAScript
limitation.

The Function class

Perhaps the most interesting aspect of ECMAScript is that functions are actually full-fledged objects.
A Function class represents each and every function a developer defines. The syntax for creating a
function using the Function class directly is as follows:

var function_name = new Function(argumentl, argument2,..,argumentN, function_body) ;

In this form, each of the function arguments is one parameter, with the final parameter being the func-
tion body (the code to execute). Each of these parameters must be a string. Remember this function?

function sayHi (sName, sMessage) {
alert("Hello " + sName + "," + sMessage);

}
It can also be defined like this:

var sayHi = new Function("sName", "sMessage", "alert(\"Hello \" + sName + \", \" +
sMessage + \");");

Admittedly, this form is a little bit harder to write because of the nature of strings, but understand that
functions are just reference types and they always behave as if using the Function class explicitly cre-
ated for them. Remember this example?

function doAdd (iNum) {
alert (iNum + 100);
}

function doAdd (iNum) {
alert (iNum + 10);
}

doAdd (10) ; //outputs "20"

As you remember, the second function overrides the first, making doAdd (10) output "20" instead of
"110". This concept becomes a whole lot clearer if this block is rewritten as follows:

doAdd = new Function("iNum", "alert (iNum + 100)");
doAdd = new Function("iNum", "alert (iNum + 10)");
doAdd (10) ;

Looking at this code, it is clear that the value of doadd has changed to point to a different object. Yes,
function names are just reference values pointing to a function object and behave just as other pointers
do. It is even possible to have two variables point to the same function:

63

Chapter 2

64

var doAdd = new Function("iNum", "alert (iNum + 10) ");
var alsoDoAdd = doAdd;

doAdd (10) ; //outputs "20"

alsoDoAdd (10) ; //outputs "20"

Here, the variable doadd is defined as a function, and then alsoDoAdd is declared to point to the same
function. Both can then be used to execute the function’s code and output the same result, "20".So if a
function name is just a variable pointing to a function, is it possible to pass a function as an argument to
another function? Yes!

function callAnotherFunc (fnFunction, vArgument) {
fnFunction (vArgument) ;
}

var doAdd = new Function("iNum", "alert (iNum + 10)");

callAnotherFunc (doAdd, 10); //outputs "20"

In this example, callAnotherFunction () accepts two arguments: a function to call and an argument
to pass to the function. This code passes the doAdd () function into callAnotherFunction () with an
argument of 10, outputting "20".

Even though it’s possible to create a function using the Function constructor, it's
best to avoid it because it’s slower than defining the function in the traditional man-
ner. However, all functions are considered instances of Function.

Because functions are reference types, they can also have properties and methods. The one property
defined in ECMAScript is 1ength, which indicates the number of arguments that a function expects.
Example:

function doAdd (iNum) {
alert (iNum + 10);
}

function sayHi() {

alert ("Hi");
}
alert (doAdd.length) ; //outputs "1"
alert (sayHi.length) ; //outputs "0"

The function doadd () defines one argument to pass in, so its lengthis 1; sayHi () defines no argu-
ments, so its length is 0. Remember, ECMAScript functions can accept any number of arguments (up to
255) regardless of how many are defined. The length property just gives a convenient way to check
how many arguments are expected by default.

Function objects also have the standard valueOf () and toString () methods shared by all objects.
Both of these methods return the source code for the function and are particularly useful in debugging.
For example:

ECMAScript Basics

function doAdd (iNum) {
alert (iNum + 10);
}

alert (doAdd.toString()) ;

This code outputs the exact text of the doadd () function (see Figure 2-9).

Microsoft Internet Explorer

3 function doAdd(num) {

alert{num + 10});

}

Figure 2-9

There are a couple of other methods of the Function class that are more relevant to
the discussion of objects and so are described in the next chapter.

Closures

One of the most misunderstood aspects of ECMAScript is its support for closures. Closures are functions
whose lexical representation includes variables that aren’t evaluated, meaning that functions are capable
of using variables defined outside of the function itself. Using global variables in ECMAScript is a sim-
ple example of a closure. Consider the following example:

var sMessage = "Hello World!";
function sayHelloWorld() {
alert (sMessage) ;

}

sayHelloWorld() ;

In this code, the variable sMessage isn’t evaluated for the function sayHelloWorld () while the scripts is
being loaded into memory. The function captures sMessage for later use, which is to say that the interpreter
knows to check the value of sMessage when the function is called. When sayHelloWorld () is called (on
the last line), the value of sMessage is assigned and the message "Hello World!" is displayed.

Closures can get more complicated, as when you are defining a function inside of another function, as
shown here:

var iBaseNum = 10;

function addNumbers (iNuml, iNum2) {
function doAddition() {

65

Chapter 2

return iNuml + iNum2 + iBaseNum;

}

return doAddition();

}

Here, the function addNumbers () contains a function (the closure) named doaAddition (). The internal
function is a closure because it captures the arguments of the outer function, iNuml and iNum2, as well
as the global variable iBaseNum. The last step of addNumbers () calls the inner function, which adds the
two arguments and the global variable and returns the value. The important concept to grasp here is that
doAddition() doesn’taccept any arguments at all; the values it uses are captured from the execution
environment.

As you can see, closures are a very powerful, versatile part of ECMAScript that can be used to perform
complex calculations. Just as when you use any advanced functionality, exercise caution when using clo-
sures because they can get extremely complex.

Summary

66

This chapter looked at the basics of ECMAScript:

QO General syntax

Defining variables using the var keyword

Primitive and reference values

The basic primitive types (Undefined, Null, Boolean, Number, and String)
The basic reference types (Object, Boolean, Number, and String)

O 00 o o

Operators and statements
Q Functions
Understanding ECMAScript is an important part of JavaScript programming, which is why this chapter

is perhaps the most important in this book. A good grasp of the core is vital to comprehending the rest of
the topics in the book.

The next chapter focuses on more of the object-oriented aspects of ECMAScript, including how to create
your own classes and how to establish inheritance.

ﬁ

Object Basics

ECMAScript objects are one of the unique (and useful) features of JavaScript. Chapter 2,
“ECMAScript Basics,” introduced the concept that everything is an object, including functions.
This chapter focuses on how to manipulate and use those objects, as well as how to create your
own objects to add functionality specific to your needs.

Object-Oriented Terminology

ECMA-262 defines an object as an “unordered collection of properties each of which contains a
primitive value, object, or function.” Strictly speaking, this means that an object is an array of val-
ues in no particular order. Although this is ECMAScript’s interpretation, an object is more generi-
cally defined to be a code-based representation of a noun (person, place, or thing).

Each object is defined by a class, which can be thought of as a recipe for an object. The class defines
both the interface of an object (the properties and methods that can be accessed by developers) as
well as the inner workings of the object (the code that makes the properties and methods work).
The compiler or interpreter uses the class to build objects according to its specifications.

When a program uses a class to create an object, the resulting object is said to be an instance of the
class. The only limit to the number of instances that can be created from a single class is the physi-
cal memory limitations of the machine on which the code is running. Each instance behaves the
same way, but each can handle separate sets of data. The process of creating an object instance
from a class is called instantiation.

As I discussed briefly in Chapter 1, ECMAScript has no formal classes. Instead, ECMA-262 describes
object definitions as the recipes for an object. This is a logical compromise for ECMAScript, because
object definitions actually are objects in and of themselves (which I explain shortly). Even though
classes don’t actually exist, this book refers to object definitions as classes because the term is more
familiar to most developers and, functionally, the two are equivalent.

Chapter 3

The object definition is contained within a single function called a constructor. The constructor isn’t a
special kind of function; it’s just a regular function that is used to create an object. Later in this chapter,
you learn how to create your own constructors.

Requirements of object-oriented languages

Before a language can be called object-oriented, it must provide four basic capabilities to developers:
1. Encapsulation — the capability to store related information, whether data or methods, together
in an object
2. Aggregation — the capability to store one object inside of another object

3. Inheritance — the capability of a class to rely upon another class (or number of classes) for some
of its properties and methods

4. Polymorphism — the capability to write one function or method that works in a variety of differ-

ent ways

ECMAScript supports all four of these requirements and so is considered to be object-oriented.

Composition of an object

In ECMAScript, objects are composed of attributes, which are either primitive or reference values. If an
attribute contains a function, it is considered to be a method of the object; otherwise, the attribute is con-
sidered a property.

Working with Objects

The previous chapter touched briefly on how to work with objects, but now it’s time to go into more
detail. Objects are created and destroyed throughout the execution of JavaScript code, and understand-
ing the implications of this paradigm is vital to your understanding of the language as a whole.

Declaration and instantiation

Objects are created by using the new keyword followed by the name of the class you wish to instantiate:

var oObject = new Object();
var oStringObject = new String();

The first line creates a new instance of Object and stores it in the variable cObject; the second line cre-
ates a new instance of String and stores it in the variable oStringObject. The parentheses aren’t
required when the constructor doesn’t require arguments, so these two lines could be rewritten as
follows:

var oObject = new Object;
var oStringObject = new String;

68

Object Basics

Object references

In Chapter 1, the concept of reference types was introduced. In ECMAScript, it is not possible to access
the physical representation of the object; it is only possible to access references to the object. Every time
you create an object, a reference to the object is stored in the variable, not the actual object itself.

Dereferencing objects

ECMAScript has a garbage collection routine, meaning that you don’t have to specifically destroy objects
in order to free up the memory. When there are no remaining references to an object, the object is said to
be dereferenced. When the garbage collector is run, all dereferenced objects are destroyed. The garbage
collector runs whenever a function has completed its code, freeing up all local variables, and at other
not-so-predictable times.

It is possible to forcibly dereference objects by setting all its references equal to null. For example:

var oObject = new Object;
//do something with the object here
oObject = null;

When the variable oObject is set to null, there are no longer any references to the object created in the
first line. This means that the next time the garbage collector is run, this object will be destroyed.

It’s always a good idea to dereference an object as soon as you're done using it in order to free up mem-
ory. Doing so can also prevent programming errors by ensuring that you aren’t using an object that
should no longer be accessible. Additionally, older browsers (such as IE/Mac) don’t have conscientious
garbage collectors, so objects may not be properly destroyed when a page is unloaded. Dereferencing an
object and all its properties is the best way to ensure proper memory usage.

Be careful to dereference all references to an object. If you have two or more refer-
ences to the same object, all of them must be set to null in order to for you properly
dereference the object.

Early versus late binding

The concept of binding describes the method whereby an object’s interface is bound to an object instance.

Early binding means that properties and methods are defined for an object (via its class) before it is
instantiated so the compiler/interpreter can properly assemble the machine code ahead of time. In lan-
guages such as Java and Visual Basic, early binding allows for the use of IntelliSense (the capability that
gives the developer a list of available properties and methods for a particular object) in development
environments. ECMAScript isn’t strongly typed, so it does not support early binding.

Late binding, on the other hand, means that the compiler /interpreter doesn’t know what type of object is
being held in a particular variable until runtime. With late binding, no check is made to determine the
particular type of object, only whether the object supports the property or method. ECMAScript uses late
binding for all variables, which allows a large amount of object manipulation to occur without penalty.

69

Chapter 3

Types of Objects

In ECMAScript, all objects are not created equal. Generally speaking, three specific types of objects can
be used and/or created.

Native objects

ECMA-262 defines native objects as “any object supplied by an ECMAScript implementation indepen-
dent of the host environment.” Simply put, native objects are the classes (reference types) defined by
ECMA-262. They include all the following;:

Object Function Array String

Boolean Number Date RegExp

Error EvalError RangeError ReferenceError
SyntaxError TypeError URIError

Some of these native objects you are already familiar with from the previous chapter (Object, Function,
String, Boolean, and Number), and some will be discussed later in the book. For now, the two native
objects of importance are Array and Date.

The Array class

70

In ECMAScript, unlike in Java, there is an actual Array class. You create an Array object like this:
var aValues = new Array();

If you know ahead of time how many items you need in the array, you can pass in the array size as a
parameter:

var aValues = new Array(20);

Using either of these two methods, you must populate the array by using bracket notation, similar to
how it is done in Java:

var aColors = new Array();

aColors[0] = "red";
aColors[1l] = "green";
aColors[2] = "blue";

Here, an array is created and given three items, "red", "green", and "blue". The array dynamically
grows in size with each additional item

Also, if you know the values that the array should contain, you can specify those as arguments, creating
an Array object with a length equal to the number of arguments. For example, the following line of code

creates an array of three strings:

var aColors = new Array("red", "green", "blue");

Object Basics

As in strings, the first item in an array is in position 0, the second is in position 1, and so on. To access a
particular item, use square brackets enclosing the position of the item to retrieve. For instance, to output
the string "green" from the array defined previously, you do this:

alert (aColors[1]); //outputs "green"
The full size of the array can be determined by using the 1length property. Like the same property in
strings, the length property is always one more than the position of the last item, meaning that an array

with three items has items in positions 0 through 2.

var aColors = new Array("red", "green", "blue");
alert (aColors.length) ; //outputs "3"

As mentioned previously, the size of an array can grow and shrink as necessary. So, if you wanted to add
another item to the array defined previously, you can just place the value in the next open position:

var aColors = new Array("red", "green", "blue");
alert (aColors.length) ; //outputs "3"
aColors[3] = "purple";

alert (aColors.length) ; //outputs "4"

In this code, the next open position is 3, so the value "purple" is assigned to it. This addition changes
the length of the array from 3 to 4. But what would happen if you placed a value in position 25 of this
array? ECMAScript fills in all positions from 3 to 24 with the value nul1l; then it places the appropriate
value in position 25, increasing the size of the array to 26:

var aColors = new Array("red", "green", "blue");
alert (aColors.length) ; //outputs "3"
aColors[25] = "purple";

aColors (arr.length) ; //outputs "26"

Arrays can contain a maximum of 4294967295 items, which should be plenty for
almost all programming needs. If you try to add more than that number, an excep-
tion occurs.

You can also define an Array object by using the literal representation, which is indicated by using
square brackets ([and]) and separating the values with commas. For instance, the previous example can
be rewritten in the following form:

var aColors = ["red", "green", "blue"];

alert (aColors.length) ; //outputs "3"

aColors[25] = "purple";

alert (aColors.length) ; //outputs "26"

Note that, in this case, the Array class is never mentioned explicitly. The square brackets imply that the
enclosed values are to be made into an Array object. Arrays declared in this way are exactly equal to
arrays declared in the more traditional manner.

71

Chapter 3

72

The Array object overrides the toString () and valueOf () methods to return a special string. This
string is made by calling the toString () method on each item in the array and then combining them
using commas. For example, an array with the items "red", "green", and "blue" return the string
"red, green, blue" when either of the methods is called.

var aColors = ["red", "green", "blue"];
alert (aColors.toString()); //outputs "red,green,blue"
alert (aColors.valueOf ()); //outputs "red,green,blue"

Similarly, the toLocaleString () method returns a string made up of the items in the array. The one
difference here is that each of the items’ toLocaleString () methods is called to get the value. In many
cases, this returns the same value as toString (), with the strings joined by commas.

var aColors = ["red", "green", "blue"];
alert (aColors.toLocaleString()) ; //outputs "red,green,blue"

Because developers may also want to create such values out of arrays, ECMAScript provides a method
called join (), whose sole purpose it is to create concatenated string values. The join () method accepts
one argument, which is the string to use between the items. Consider the following example:

var aColors = ["red", "green", "blue"];

alert(aColors.join(",")); //outputs "red,green,blue"

alert (aColors.join("-spring-")); //outputs "red-spring-green-spring-blue"
alert(aColors.join("]1[")); //outputs "red] [green] [blue"

Here, the join () method is used to create three different string representations of the array. The first,
using the comma, is essentially equal to calling the toString () or valueOf () method; the second and
third use different strings to create odd (and probably not that useful) separators between the array
items. The point to understand is that any string can be used as a separator.

You may be wondering at this point, if the Array has a way to convert itself into a string, does the
String have a way to convert itself into an array? The answer is yes. The String class has a method
called split () that does exactly that. The split () method takes only one parameter. That parameter,
as you probably guessed, is the string that should be considered the separator between items. So, if you
have a string separated by commas, you can do the following to convert it into an Array:

var sColors = "red,green,blue";
var aColors = sColors.split(",");

If you specify an empty string as the separator, the split () method returns an array in which each item
is equal to one character in the string, for example:

var sColors = "green";
var aColors = sColors.split("");
alert (aColors.toString()); //outputs "g,r,e,e,n"

Here, the string "green" is transformed into an array of the strings "g", "r", "e", "e",and "n". This
functionality can be useful if you need to parse strings character-by-character.

Object Basics

The Array object has a couple of methods that have equivalents in the String class, namely the con-
cat () and slice () methods. The concat () method works almost exactly the same as it does with

strings: The arguments are appended to the end of the array, and a new Array object (one containing
both the items in the original array and the new items) is returned as the function value. For example:

var aColors = ["red", "green", "blue"];

var aColors2 = arr.concat("yellow", "purple");

alert (aColors2.toString()); //outputs "red,green,blue,yellow,purple"
alert (aColors.toString()); //outputs "red,green,blue"

In this example, the strings "yellow" and "purple" are added to the array using the concat ()
method. The aColors2 array contains five values whereas the original array, aColors, still contains
only three. This can be proved by calling the toString () method on each array.

The slice () method is also very similar to String class equivalent in that it returns a new array con-
taining the specified items. Just like the String’s method, the Array’s slice () method can accept one
or two arguments: the starting and stopping positions of the items to extract. If only one argument is
present, the method returns all items between that position and the end of the array; if there are two
arguments, the method returns all items between the first position and second position, not including
the item in the second position. For example:

var aColors = ["red", "green", "blue", "yellow", "purple"];
var aColors2 = arr.slice(l);

var aColors3 = arr.slice(l, 4);
alert (aColors2.toString())
alert (aColors3.toString())

; //outputs "green,blue,yellow,purple"
; //outputs "green,blue,yellow"

Here, aColors2 contains all the items in arr from position 1 on. Because the string "green" is in position
1, this is the first item in the new array. For acolors3, the slice () method is called with two arguments,
1 and 4. The string "green" is in position 1 and the string "purple" is in position 4, so acolors3 con-
tains "green", "blue", and "yellow" because slice () only includes the item immediately before the
last position.

One of the interesting things about the ECMAScript Array class is that it provides methods to make an
array behave like other types of data structures. An Array object, for example, can act just like a stack,
which is one of a group of data structures that restrict the insertion and removal of items. A stack is
referred to as a last-in-first-out (LIFO) structure, meaning that the most recently added item is the first
one removed. The insertion and removal of items in a stack occur at only one point: the top of the stack.

It helps to think of a stack in literal terms, such as a stack of plates. If you want to add a plate to the stack
of plates, you place the plate on top of the stack. When an item is added to a stack data structure, it is
said to be pushed onto the stack; it is added at the top (Figure 3-1).

When it comes time to remove a plate for dinner, what do you do? You remove the top plate from the
stack of plates and put it on the table. Again, the stack data structure works the same way, removing
only the topmost item. When an item is removed from a stack, it is said to be popped from the stack
(Figure 3-2).

73

Chapter 3

74

Push onto the stack

top
l ;
3 3 3
2 2 2
1 1 1
0 0 0
bottom
Figure 3-1
Pop off the stack
; I
2 2
1 1
0 0
bottom
Figure 3-2

To facilitate such functionality, the Array object provides two methods, push () and pop (). As you
might expect, the push () method adds one or more items to the end of the Array whereas the pop ()
method removes the very last item (1ength - 1) from the array and returns it as the function value.
Consider the following example:

var stack = new Array;
stack.push("red") ;
stack.push("green") ;
stack.push("yellow") ;

alert (stack.toString()); //outputs "red,green,yellow"
var vIitem = stack.pop();

alert (vItem); //outputs "yellow"

alert (stack.toString()); //outputs "red,green"

In the previous code, an empty Array object is created and then populated by using the push () method
numerous times (note that even though this example shows only one argument for the push () method,

you can, in fact, pass as many arguments as you wish). After the array is filled, the string value is output
("red, green, yellow") to assure that all items have been added. Then, the pop () method is called,

Object Basics

which returns only the last item, "yellow", and stores it in the variable vItem. The array is then left
with only the strings "red" and "green".

The push () method is actually the same as manually adding the array items as shown in previous
examples. This example could be rewritten as the following:

var stack = new Array;

stack[0] = "red";

stack[1l] = "green";

stack[2] = "yellow";

alert (stack.toString()); //outputs "red,green,yellow"
var vIitem = stack.pop();

alert (vItem); //outputs "yellow"
alert(stack.toString()); //outputs "red,green"

The Array also provides methods to manipulate the very first item. The shift () method removes the first
item in the array and returns it as the function value. On the other end of the spectrum, the unshift ()
method places an item into the first position of the array, shifting all other items down one position in the
process. Example:

var aColors = ["red", "green", "yellow"];

var vItem = aColors.shift();

alert (aColors.toString()); //outputs "green,yellow"

alert (vItem); //outputs "red"

aColors.unshift ("black");

alert (aColors.toString()); //outputs "black,green,yellow"

In this example, the string "red" is removed (shift ()ed) from the array, leaving only "green" and
"yellow". By using the unshift () method, the string "black" is placed at the front of the array, effec-
tively replacing "red" as the new value in the first position.

By using shift () and push (), it is possible to make an Array object behave like a queue. A queue is a
member of the group of data structures that restricts the insertion and removal of elements. A queue is
referred to as a last-in-last-out (LILO) structure, meaning that the most recently added element is the last
one removed. The insertion of elements always occurs only at the back of the queue whereas the
removal of elements occurs only at the front of the queue.

When you think of a queue, think of a line at the movies. When new people arrive to get tickets, they go
to the back of the line (Figure 3-3). This is traditionally called put or enqueue.

Start

e [1]2[3]a]e—[5]

Result |1]2]|3]4]5]
Figure 3-3

75

Chapter 3

They wait their turns, eventually moving to the front of the line where they buy their tickets. After the
purchase is complete, the people leave the front of the line and go into the movies (Figure 3-4). This is
traditionally called get or dequeue.

Start

cet [1]«—(z]s]4]

Result

Figure 3-4

Although the names of the methods aren’t the same, the functionality is the same. You add items to the
queue using the push () method (adding items to the back of the array) and remove items from the
queue by using the shift () method:

var queue = ["red", "green", "yellow"];

queue.push("black") ;

alert (queue.toString()); //outputs "red,green,yellow,black"
var sNextColor = queue.shift();

alert (sNextColor) ; //outputs "red"

alert (queue.toString()); //outputs "green,yellow,black"

In this example, the string "black" is added to the back of the queue by using the push () method. In
order to get the next color, the shift () method is used to retrieve "red", leaving the queue with only
"green", "yellow",and "black".

Two methods relate to the ordering of items in arrays, the reverse () and sort () methods. The
reverse () method, as one might expect, simply reverses the order of the items in an array. So if you
want to reverse the order of "red", "green", "blue", you do this:

var aColors = ["red", "green", "blue"];
aColors.reverse() ;
alert (aColors.toString()); //outputs "blue,green,red"

The sort () method, on the other hand, arranges the item in the array by sorting them into ascending
order based on their values. To do this sort, transform all values into strings by calling their toString ()
method. The items are compared by character code (as I described in the section on using the less-than
operator on strings). For example:

var aColors = ["red", "green", "blue", "yellow"];
aColors.sort () ;
alert (aColors.toString()) ; //outputs "blue,green,red,yellow"

76

Object Basics

This code sorts the strings "red", "green", "blue", and "yellow" into alphabetical order by using
their character codes. Because all values are strings, this sort order is logical. If, however, the values are
numbers, the result becomes bizarre:

var aColors = [3, 32, 2, 5]
aColors.sort () ;
alert (aColors.toString()); //outputs "2,3,32,5"

When trying to sort the numbers 3, 32, 2, and 5, the sort () method reorders the items into 2, 3, 32, and
5. As mentioned before, this occurs because the numbers are converted to strings and then compared by
character code. This problem can be overcome. I discussed this further in Chapter 12, “Sorting Tables.”

The most complicated method by far is splice (). The purpose of this method is quite simple really: to
insert items into the middle of an array. The variety of ways that splice () uses to insert these items,
however, takes some getting used to:

Q Deletion — You can delete any number of items from the array by specifying just two parame-
ters, the starting position of the first item to delete and the number of items to delete. For exam-
ple: arr.splice (0, 2) deletes the first two items in the array arr.

Q Replacement without delete — You can insert items into a specific position by specifying three
parameters: the starting position, 0 (the number of items to delete), and the item to insert. You
can optionally specify fourth, fifth, or any number of other parameters to insert. For example,
arr.splice(2, 0, "red", "green") inserts the strings "red" and "green" into the array
arr at position 2.

Q Replacement with delete — You can insert items into a specific position while simultaneously
deleting items by specifying three parameters: the starting position, the number of items to
delete, and the item to insert. Here, you can also specify extra parameters to insert. The
number of items to insert doesn’t have to match the number of items to delete. For example,
arr.splice(2, 1, "red", "green") deletes one item at position 2 and then inserts the
strings "red" and "green" into the array arr at position 2.

As you can tell, the Array class is an extremely versatile and helpful object. Chapter 12 explores using
arrays in a more practical manner, but for now, this information is all you need to know.

The Date class

The Date class in ECMAScript is based on earlier versions of java.util.Date from Java. ECMAScript,
as well as Java, stores the date as the number of milliseconds since 12 AM on January 1, 1970 UTC. UTC
stands for Universal Time Code (also known as Greenwich Mean Time), which is the standard time
upon which all time zones are based. Storing the number of milliseconds ensures that both Java and
ECMAScript were immune from the dreaded “Y2K” problems that plagued older mainframe computers
in the late 1990s. Dates can accurately be represented 285,616 years before or after January 1, 1970, mean-
ing that you won’t have any problems with date storage unless you live to be over 200,000 years old.

To create a new Date object, you simply do the following:

var d = new Date();

77

Chapter 3

78

This line creates a new Date object with the current date and time. You can also set the date and time
value when creating a new Date object in one of two ways. The first is to just specify the number of
milliseconds since 12 AM on January 1, 1970:

var d = new Date(0);

Two class methods (which would be static methods in Java) called parse () and UTC () can also be used
in conjunction with this method of creating Date objects. The parse () method accepts a string as an
argument and tries to convert that string into a date value (meaning the millisecond representation).
ECMA-262 doesn’t define the date formats that the parse () method accepts, so this is purely imple-
mentation-specific and often locale-specific. For instance, in the United States, most implementations
support the following date formats:

O mm/dd/yyyy (such as 6/13/2004)
Q mmmm dd, yyyy (such as January 12, 2004)

For instance, if you wanted to create a Date object for May 25, 2004, you could use the parse () method
to get the millisecond representation and then pass that value into the Date constructor:

var d = new Date(Date.parse("May 25, 2004"));
If the string passed in to parse () can’t be turned into a date, the function returns NaN.

The UTC () method also returns the millisecond representation of a date, but with different arguments:
year, month, day of the month, hours, minutes, seconds, and milliseconds. When using this method,
you must always specify the year and month, but the other information is optional. Be very careful
when setting the month because the values go from 0 to 11, where 0 is equal to January and 11 is equal
to December, so to set a date equal to February 5, 2004, you do this:

var d = new Date(Date.UTC (2003, 1, 5));

Here, the 1 represents February, the second month. This is obviously a very important difference to keep
track of when accepting user input to create a date. The other information is as you would expect, with
the possible exception that the hours are given in military time (0 through 23) instead of AM/PM. So, to
set a date equal to February 5, 2004 at 1:05 PM, you use this code:

var d = new Date(Date.UTC(2003, 1, 5, 13, 5));
The second method of creating a date is to specify the same arguments that UTC () accepts directly:
var d = new Date (2003, 1, 5);

The arguments are specified in the same order, and they don’t all need to be present (except for the year
and month).

The Date class is one of the few that overrides tostring () and valueOf () differently. The valueOf ()
method always return the millisecond representation of the date whereas the toString () method
returns a string in an implementation-specific, human-readable format. For this reason, it is impossible
to depend on the toString () method for any consistent behavior. As an example, in the United States,

Object Basics

Internet Explorer displays February 2, 2003 as “Sat Feb 2 00:00:00 EST 2003” while Mozilla displays it as
“Tue Feb 2 2003 00:00:00 GMT-0400 (Eastern Daylight Time)”.

Several other methods are also designed to create alternate string representations of a particular date:

Q toDateString() — displays only the date part of a Date (only the month, day, and year) in an
implementation-dependent format

QO toTimeString() — displays only the time part of a Date (hours, minutes, seconds, and time
zone) in an implementation-dependent format

0 toLocaleString() — displays the date and time of a Date in a locale-specific format

0 toLocaleDateString() — displays the date part of a Date value in a locale-specific format

Q toLocaleTimeString () — displays the time part of a Date in a locale-specific format

Q tourcstring() — displays the UTC date of a Date in an implementation-specific format

Each of these methods outputs different values in different implementations and locales, and for this
reason, care must be exercised when using them.

In case you haven't figured it out yet, the Date class relies heavily on the UTC date and time. In

order to indicate a particular time zone’s relationship to UTC, the Date class provides a method called
getTimezoneOffset (). This method returns the number of minutes that the current time zone is ahead
or behind UTC. For instance, getTimezoneOffset () returns 300 for U.S. Eastern Daylight Saving Time,
which is 5 hours (or 300 minutes) behind UTC.

It is possible to determine if a particular time zone makes use of daylight saving time by using the
getTimezoneOffset (). To do this, create a date of January 1 of any year, and then create a date of July
1 in the same year. Then, compare the time zone offset. If the minutes aren’t equal, the time zone uses
daylight saving time; if they are equal, the time zone doesn’t use daylight saving time.

var dl = new Date(2004, 0, 1);
var d2 = new Date (2004, 6, 1);
var bSupportsDaylightSavingTime = dl.getTimezoneOffset() != d2.getTimezoneOffset();

The remaining methods of the Date class (listed in the following table) are simply used to set and get
particular parts of a date value.

Method Description

getTime () Returns the milliseconds representation of the date.

setTime (milliseconds) Sets the milliseconds representation of the date.

getFullYear () Returns the year of the date, represented by four dig-
its (such as 2004 instead of just 04).

getUTCFullYear () Returns the year of the UTC date, represented by four
digits.

Table continued on following page

79

Chapter 3

Method

Description

setFullYear (year)

setUTCFullYear (year)

getMonth ()

getUTCMonth ()

setMonth (month)

setUTCMonth (month)

getDate ()

getUTCDate ()

setDate (date)
setUTCDate (date)
getDay ()
getUTCDay ()

setDay (day)
setUTCDay (day)
getHours ()
getUTCHours ()
setHours (hours)
setUTCHours (hours)
getMinutes ()
getUTCMinutes ()
setMinutes (minutes)
setUTCMinutes (minutes)
getSeconds ()
getUTCSeconds ()

setSeconds (seconds)

Sets the year of the date, which must be given as a
four-digit year.

Sets the year of the UTC date, which must be given as
a four-digit year.

Returns the month of the date, represented by the
numbers 0 (for January) through 11 (for December).

Returns the month of the UTC date, represented
by the numbers 0 (for January) through 11 (for
December).

Sets the month of the date, which is any number 0 or
greater. Numbers greater than 11 begin to add years.

Sets the month of the UTC date, which is any number
0 or greater. Numbers greater than 11 begin to add
years.

Returns the date, which is the day of the month, of the
date value.

Returns the date, which is the day of the month, of the
UTC date value.

Sets the day of the month of the date.

Sets the day of the month of the UTC date.
Returns the day of the week of the date.
Returns the day of the week of the UTC date.
Sets the day of the week of the date.

Sets the day of the week of the UTC date.
Returns the hours of the date time.
Returns the hours of the UTC date time.
Sets the hours of the date time.

Sets the hours of the UTC date time.
Returns the minutes of the date time.
Returns the minutes of the UTC date time.
Sets the minutes of the date time.

Sets the minutes of the UTC date time.
Returns the seconds of the date time.
Returns the seconds of the UTC date time.

Sets the seconds of the date time.

80

Object Basics

Method Description
setUTCSeconds (seconds) Sets the seconds of the UTC date time.
getMilliseconds () Returns the milliseconds of the date time. Note that

this does not refer to the milliseconds since January 1,
1970, but rather the number of milliseconds in the cur-
rent time, such as 4:55:34.20, where 20 is the number
of milliseconds of the time.

getUTCMilliseconds () Returns the milliseconds of the UTC date time.
setMilliseconds (milliseconds) Sets the milliseconds of the date time.
setUTCMilliseconds (millseconds) Sets the milliseconds of the UTC date time.

Built-in objects

ECMA-262 defines a built-in object as “any object supplied by an ECMAScript implementation, indepen-
dent of the host environment, which is present at the start of the execution of an ECMAScript program.”
This means the developer does not need to explicitly instantiate a built-in object; it is already instanti-
ated. Only two built-in objects are defined by ECMA-262: Global and Math (which are also both native
objects because by definition, every built-in object is a native object).

The Global object

The Global object is the most unique in ECMAScript because, for all intents and purposes, it doesn’t
exist. If you try typing the following line, you get an error:

var pointer = Global;

The error would say that Global is not an object, but didn’t I just say that it is an object? Yes. The
main concept to understand is this: In ECMAScript no standalone functions exist; all functions must
be methods of some object to actually exist. So functions covered earlier in this book such as isNaN(),
isFinite (), parselInt (), and parseFloat () only look like they are standalone functions. In reality,
they are all methods of the G1obal object. But these are not the only methods for the G1obal object.

The encodeURI () and encodeURIComponent () methods are used to encode URIs (Uniform Resource
Identifiers) to be passed to the browser. To be valid, a URI cannot contain certain characters, such as
spaces. These methods help to encode the URIs so that a browser can still accept and understand them,
replacing all invalid characters with a special UTF-8 encoding.

The encodeURI () method is designed to work on an entire URI (for instance, http: / /www.wrox . com/
illegal value.htm), whereas encodeURIComponent () is designed to work solely on a segment of a
URI (such as illegal value.htm from the previous URI). The main difference between the two meth-
ods is that encodeURI () does not encode special characters that are part of a URI such as the colon, for-
ward slash, question mark, and pound sign; encodeURIComponent () encodes every non-standard
character it finds. For example:

var sUri = "http://www.wrox.com/illegal value.htm#start";

alert (encodeURI (sUri)) ;
alert (encodeURIComponent (sUri)) ;

81

Chapter 3

82

This code outputs two values:

http://www.wrox.com/illegal%20value.htm#start
http%$3A%2F%2Fwww.wrox.com$2Fillegal%20value.htm%23start

As you can see, the first URI was left intact except for the space, which was replaced with $20. The second
URI replaced all non-alphanumeric characters with their encoded equivalents, which essentially makes
this URI useless. This is why encodeURI () can be used on full URIs, whereas encodeURIComponent ()
can only be used on strings that are appended to the end of an existing URIL

Naturally, there are also two methods to decode URIs that have already been encoded, called
decodeURI () and decodeURIComponent (). As you might expect, these methods do the exact opposite
of their counterparts. The decodeURI () method only decodes characters that have been replaced by
using encodeURI (). For instance %20 is replaced with a space, but %23 is not replaced because it repre-
sents a pound sign (#), which encodeURI () does not replace. Likewise, decodeURIComponent ()
decodes all characters encoded by encodeURIComponent (), essentially meaning it decodes all special
values. Example:

var sUri = "http%3A%2F%2Fwww.wrox.com$2Fillegal%20value.htm%23start";
alert (decodeURI (sUri)) ;
alert (decodeURIComponent (sUri)) ;

This code outputs two values:

http%$3A%2F%2Fwww.wrox.com$2Fillegal value.htm%23start
http://www.wrox.com/illegal value.htm#start

In this example, the uri variable contains a string that is encoded using encodeURIComponent (). The
resulting values show what happens when you apply the two decoding methods. The first value is

the output of decodeURI (), which replaced only $20 with a space; the second value is the output of
decodeURIComponent (), which replaces all the special characters.

These URI methods, encodeURI (), encodeURIComponent (), decodeURI (), and
decodeURIComponent (), replace the BOM methods escape () and unescape().
The URI methods are always preferable because they encode all Unicode characters,
whereas the BOM methods encode only ASCII characters correctly. Avoid using
escape () and unescape ().

The final method is perhaps the most powerful in the entire ECMAScript language, the eval () method.
This method works like an entire ECMAScript interpreter and accepts one argument, a string of
ECMAScript (or JavaScript) to execute. For example:

eval ("alert('hi')");

This line is functionally equivalent to the following:

alert("hi");

Object Basics

When the interpreter finds an eval () call, it interprets the argument into actual ECMAScript statements
and then inserts it into place. This means that variables can be referenced inside of an eval () call that is
defined outside of its argument:

var msg = "hello world";
eval ("alert (msg)");

Here, the variable msg is defined outside of the context of the eval () call, yet the alert is still displayed
with the text "hello world" because the second line is replaced with a real line of code. Likewise, you
can define a function or variables inside of an eval () call that can be referenced by the code outside of
itself:

eval ("function sayHi() { alert('hi'); }");
sayHi () ;

Here, the sayHi () function is defined inside of an eval () call. Because that call is replaced with the
actual function, it is possible to call sayHi () on the following line.

This capability is very powerful, but also very dangerous. Use extreme caution with
eval (), especially when passing user-entered data into it. A mischievous user could
insert values that could compromise your site or application security (this is called
code injection).

The Global object doesn’t just have methods, it also has properties. Remember those special values
undefined, NaN, and Infinity? They are all properties of the Global object. Additionally, all native
object constructors are also properties of the Global object. The following table describes all the proper-
ties in more detail.

Property Description

undefined The literal for the Undefined type.

NaN The special Number value for Not a Number.
Infinity The special Number value for an infinite value.
Object Constructor for Object.

Array Constructor for Array.

Function Constructor for Function.

Boolean Constructor for Boolean.

String Constructor for String.

Number Constructor for Number.

Date Constructor for Date.

RegExp Constructor for RegExp.

Table continued on following page

83

Chapter 3

Property Description

Error Constructor for Error.
EvalError Constructor for EvalError.
RangeError Constructor for RangeError.
ReferenceError Constructor for ReferenceError
SyntaxError Constructor for SyntaxError.
TypeError Constructor for TypeError.
URIError Constructor for URIError.

The Math object

The Math object is the built-in object that you wish you had during those high school math classes: It
knows all the formulas for the most complicated mathematical problems, and it can figure them out for
you if you give it the numbers to work with.

The Math object has several properties, consisting mostly of special values in the world of mathematics.
The following table describes these properties:

Property Description

E The value of e, the base of the natural logarithms.
LN10 The natural logarithm of 10.

LN2 The natural logarithm of 2.

LOG2E The base 2 logarithm of E.

LOG10E The base 1 logarithm of E.

PI The value of .

SQRT1_2 The square root of .

SQRT?2 The square root of 2.

Although the meanings and uses of these values is outside the scope of this book, if you know what they
are, they are available when you need them.

The Math object also contains many methods aimed at performing both simple and complex mathemati-
cal calculations.

The methods min () and max () are used to determine which number is the lowest or highest in a group
of numbers. Each of these methods accepts any number of parameters:

var iMax = Math.max (3, 54, 32, 16);
alert (iMax) ; //outputs "54"

84

Object Basics

var iMin = Math.min(3, 54, 32, 16);
alert (iMin) ; //outputs "3"

Out of the number 3, 54, 32, and 16, max () returns the number 54 whereas min () returns the number 3.
These methods are useful to avoid extra loops and if statements to determine the maximum value out

of a group of numbers.

Another method is abs (), which returns the absolute value of a number. The absolute value is the posi-
tive version of a negative number (positive numbers are their own absolute values).

var iNegOne = Math.abs(-1);

alert (iNegOne) ; //outputs "1"
var iPosOne = Math.abs(1);
alert (iPosOne) ; //outputs "1"

In this example, abs (-1) returns 1 and so does abs (1).

The next group of methods has to do with rounding decimal values into integers. Three methods,
ceil(), floor (), and round (), handle rounding in different ways.

Q The ceil() method represents the ceiling function, which always rounds numbers up to the
nearest value.

Q The floor () method represents the floor function, which always rounds numbers down to the
nearest value.

Q The round () method represents a standard round function, which rounds up if the number is
more than halfway to the next value (0.5 of the way there) and rounds down if not. This is the
way you were taught to round in elementary school.

To illustrate how each of these methods works, consider using the value 25.5:

alert (Math.ceil (25.5)); //outputs "26"
alert (Math.round(25.5)); //outputs "26"
alert (Math.floor (25.5)); //outputs "25"

For ceil () and round (), passing in 25.5 returns 26, whereas £1loor () returns 25. Be careful not to use
these methods interchangeably because you could end up with some unexpected results.

Another group of methods relates to the use of exponents. These methods include the following: exp (),
which raises Math. E to a given power; log (), which returns the natural logarithm of a particular num-
ber; pow (), which raises a given number to a given power; and sqrt (), which returns the square root of
a given number.

Essentially, exp () and log () reverse each other, whereas exp () raises Math.E to a specific power and
log () determines what exponent of Math.E is needed to equal the given value. For example:

var iNum = Math.log(Math.exp(10));
alert (iNum) ;

85

Chapter 3

Here, Math.E is first raised to the power of 10 by using exp (), and then log () returns 10 as the expo-
nent necessary to equal that number. If you are confused, you're not alone. This type of stuff stumps
high school and college math students worldwide. Chances are if you don’t know what the natural loga-
rithm is, you'll probably never need to code it.

The pow () method is used to raise a number to a given power, such as raising 2 to the power of 10 (rep-
resented in math as 219):

var iNum = Math.pow(2, 10);

The first argument of pow () is the base number, in this case, 2. The second argument is the power to
raise it to, which is 10 in this example.

It is not recommended to use Math.E as a base for the pow () method. Always use
exp () for this because it does special calculations to determine the value more
accurately.

The last method in this group is sqrt (), which returns the square root of a given number. It takes only
one argument, which is the number whose square root you want to find. So to find the square root of 4,
you need only this line of code:

var iNum = Math.sqrt(4);
alert (iNum) ; //outputs "2"

Of course, the square root of 4 is 2, which is output in this code.

You may ask, “What does the square root have to do with exponents?” The square root of a number is
actually that number raised to the one-half power; for example, 2 12 is the square root of 2.

There is also a complete set of geometric methods included in the Math object. These are displayed in the
following table.

Method Description

acos (x) Returns the arc cosine of x.
asin(x) Returns the arc sine of x.
atan (x) Returns the arc tangent of x.
atan2(y, x) Returns the arc cosine of y/x.
cos (x) Returns the cosine of x.
sin(x) Returns the sine of x.

tan (x) Returns the tangent of x.

86

Object Basics

Even though these methods are defined by ECMA-262, the results are implementation-dependent because
you can calculate each value in many different ways. Consequently, the precision of the results may also
vary from one implementation to another.

The last method of the Math object is random () . This method returns a random number between the 0
and 1, not including 0 and 1. This is a favorite tool of Web sites that are trying to display random quotes
or random facts upon entry. You can use random () to select numbers within a certain range by using the
following formula:

number = Math.floor (Math.random() * total_number_of_choices + first_possible_value)

The floor () method is used here because random () always returns a decimal value, meaning that mul-
tiplying it by a number and adding another still yields a decimal value. Most of the time, you want to
select a random integer. Because of that, the floor () method is needed. So, if you wanted to select a
number between 1 and 10, the code looks like this:

var iNum = Math.floor (Math.random() * 10 + 1);

You see 10 possible values (1 through 10) with the first possible value being 1. If you want to select a
number between 2 and 10, then the code looks like this:

var iNum = Math.floor (Math.random() * 9 + 2);

There are only nine numbers when counting from 2 to 10, so the total number of choices is 9 with the
first possible value being 2. Many times, it’s just easier to use a function that handles the calculation of
the total number of choices and the first possible value:

function selectFrom(iFirstValue, iLastValue) {
var iChoices = ilLastValue - iFirstValue + 1;
return Math.floor (Math.random() * iChoices + iFirstValue);

}

//select from between 2 and 10
var iNum = selectFrom(2, 10);

Using the function, it’s easy to select a random item from an Array:

var aColors = ["red", "green", "blue", "yellow", "black", "purple", "brown"];
var sColor = aColors[selectFrom(0, aColors.length-1)];

Here, the second parameter to selectFrom() is the length of the array minus 1, which (as you remem-
ber) is the last position in an array.

Host objects

Any object that is not native is considered to be a host object, which is defined as an object provided by
the host environment of an ECMAScript implementation. All BOM and DOM objects are considered to
be host objects and are discussed later in the book.

87

Chapter 3

Scope

Programmers in any language understand the concept of scope, meaning the area in which certain vari-
ables are accessible.

Public, protected, and private

In traditional object-oriented programming, a lot of focus is placed on the public and private scopes. An
object’s properties in the public scope can be accessed from outside the object, meaning that after a devel-
oper creates an instance of the object, that property can be used. Properties in the private scope, however,
can only be accessed from within the object itself, meaning that these properties don’t exist to the out-
side world. This also means that subclasses of the class defining the private properties and methods
can’t access them either.

More recently, another scope has become popular: protected. Although different languages have different
rules for the protected scope, it generally is used to define properties and methods that act private except
that they are accessible by subclasses.

The discussion of these scopes in reference to ECMAScript is almost a moot point because only one
scope of these three exists: the public scope. All properties and methods of all objects in ECMAScript are
public. You must take great care, therefore, when defining your own classes and objects. Keep in mind
that all properties and methods are public by default.

This problem has been tackled by many developers online trying to come up with effective property
scoping schemes. Due to the lack of a private scope, a convention was developed to indicate which prop-
erties and methods should be considered private. This convention involves adding two underscores
before and after the actual property name. For example:

obj.__color__ = "red";
In this code, the color property is intended to be private. Remember, adding these underscores doesn’t
change the fact that the property is public; it just indicates to other developers that it should be consid-

ered private.

Some developers also prefer to use a single underscore to indicate private members, such as
obj._color.

Static is not static

88

The static scope defines properties and methods accessible all the time from one location. In Java, classes
can have static properties and methods that are accessible without instantiating an object of that class,
such as java.net .URLEncoder, whose function encode () is a static method.

Strictly speaking, ECMAScript doesn’t have a static scope. It can, however, provide properties and meth-
ods on constructors. Remember, constructors are just functions. Functions are objects, and objects can
have properties and methods. For instance:

function sayHi() {
alert("hi");
}

Object Basics

sayHi.alternate = function() {
alert("hola");
Y

sayHi () ; //outputs "hi"
sayHi.alternate(); //outputs "hola"

Here, the method alternate () is actually a method on the function sayHi. It is possible to call the
sayHi () as a regular function to output "hi" as well as calling sayHi.alternate () to output "hola".
Even so, alternate () is considered to be a method of the function sayHi () in the public scope, not a
static method.

The this keyword
One of the most important concepts to grasp in ECMAScript is the use of the this keyword, which is

used in object methods. The this keyword always points to the object that is calling a particular
method, for example:

var oCar = new Object;

oCar.color = "red";
oCar.showColor = function () {
alert (this.color); //outputs "red"

Y

Here, the this keyword is used in the showColor () method of an object. In this context, this is equal
to car, making this code functionality equivalent to the following:

var oCar = new Object;

oCar.color = "red";
oCar.showColor = function () {
alert (oCar.color) ; //outputs "red"

Y

So why use this? Because you can never be sure of the variable name a developer will use when instan-
tiating an object. By using this, it is possible to reuse the same function in any number of different
places. Consider the following example:

function showColor () {
alert (this.color);

}

var oCarl = new Object;
oCarl.color = "red";
oCarl.showColor = showColor;

var oCar2 = new Object;
oCar2.color = "blue";

oCar?2.showColor = showColor;

oCarl.showColor () ; //outputs "red"
oCar2.showColor () ; //outputs "blue"

89

Chapter 3

In this code, the function showColor () is defined first (using this). Then, two objects (oCarl and
oCar2) are created, one with a color property set to "red", and the other with a color property set

to "blue". Both objects are assigned a property called showColor that points to the original function
named showColor () (note that no naming problem exists because one is a global function and the other
is a property of an object). When calling showColor () on each object, the oCarl outputs "red" whereas
oCar2 outputs "blue". This happens because the this keyword in the function is equal to car1 when
oCarl.showColor () is called and equal to oCar2 when oCar2. showColor () is called.

Note that the this keyword must be used when referring to properties of an object. For instance,
showColor () wouldn’t work if it were written like this:

function showColor () {
alert(color);

}

Whenever a variable is referenced without an object or this before it, ECMAScript thinks that it is a
local or global variable. This function then looks for a local or global variable named color, which it
won't find. The result? The function displays "null" in the alert.

Defining Classes and Objects

The capability to use predefined objects is only one part of an object-oriented language. The true power
comes because you can create your own classes and objects for specific uses. As with many things in
ECMAScript, you can accomplish this in a variety of ways.

Factory paradigm

20

Because properties of an object can be defined dynamically after its creation, a lot of developers wrote
code similar to the following when JavaScript was first introduced:

var oCar = new Object;

oCar.color = "red";

oCar.doors = 4;

oCar.mpg = 23;

oCar.showColor = function () {
alert(this.color);

Y

In this code, an object is created named car. The object is then given several properties: Its color is red, it
has four doors, and it gets 23 miles per gallon. The last property is actually a pointer to a function, which
means the property is a method. After this code is executed, you can use an object called car. The prob-
lem is that you may need to create more than one instance of a car.

To solve the problem, developers created factory functions, which create and return an object of a specific
type. For example, a function called createCar () could be used to encapsulate the creation of the car
object described previously:

Object Basics

function createCar() {
var oTempCar = new Object;
oTempCar.color = "red";
oTempCar.doors = 4;
oTempCar.mpg = 23;
oTempCar.showColor = function () {
alert (this.color)

Y

return oTempCar;

}

var oCarl createCar () ;
var oCar2 = createCar();

Here, all the previous lines of code are contained within the createcar () function, including one extra
line, which returns the car (oTempCar) as the function value. When this function is called, it creates a
new Object and assigns all the properties necessary to replicate the car object described earlier. Using
this method, it is easy to create two (or more) versions of a car object (oCarl and oCar2) that have the
exact same properties. Of course, the createCar () function can also be modified to allow the passing in
of default values for the various properties instead of just assigning default values:

function createCar(sColor, iDoors, iMpg) {
var oTempCar = new Object;
oTempCar.color = sColor;
oTempCar.doors = iDoors;
oTempCar.mpg = iMpg;
oTempCar.showColor = function () {
alert (this.color)

Y

return oTempCar;

}

var oCarl = createCar("red", 4, 23);
var oCarl = createCar("blue", 3, 25);
oCarl.showColor () ; //outputs "red"
oCar2.showColor () ; //outputs "blue"

By adding arguments to the createcCar () function, it is possible to assign values to the color, doors,
and mpg properties of the car object being created. This leaves two objects with the same properties but
different values for those properties.

As ECMAScript became more formalized, however, this method of creating objects fell out of favor and
is typically frowned upon today. Part of the reason for this was semantic (it doesn’t look as appropriate
as using the new operator with a constructor), and part was functional. The functional problem has to do
with the creation of object methods using this paradigm. In the previous example, every time the
createCar () function is called, a new function is created called showColor (), meaning that every
object has its own version of showColor () when, in reality, each object should share the same function.

91

Chapter 3

Some got around this problem by defining the object methods outside of the factory functions and then
pointing to them:

function showColor () {
alert(this.color);

}

function createCar (sColor, iDoors, iMpg) {
var oTempCar = new Object;
oTempCar.color = sColor;
oTempCar.doors = iDoors;
oTempCar.mpg = iMpg;
oTempCar .showColor = showColor;
return oTempCar;

}

var oCarl = createCar("red", 4, 23);
var oCar2 = createCar("blue", 3, 25);
oCarl.showColor () ; //outputs "red"
oCar2.showColor () ; //outputs "blue"

In this rewritten code, the showColor () function is defined before the createCar () function. Inside
createCar (), the object is assigned a pointer to the already existing showColor () function. Functionally,
this solves the problem of creating duplicate function objects; but semantically, the function doesn’t look
like it is a method of an object.

All these problems led to the creation of developer-defined constructors.

Constructor paradigm

Creating a constructor is just as easy as defining a factory function, if not easier. The first step is selection
of a class name, which becomes the name of the constructor. Traditionally, this name begins with a capi-

tal letter to differentiate it from variable names, which typically begin with lowercase letters. Other than
this difference, a constructor looks a lot like a factory function. Consider the following example:

function Car(sColor, iDoors, iMpg) {
this.color = sColor;
this.doors = iDoors;
this.mpg = iMpg;
this.showColor = function () {
alert(this.color)
}i
}

var oCarl = new Car("red", 4, 23);
var oCar2 = new Car("blue", 3, 25);

The first difference you may notice is that no object is created inside the constructor; instead, the this
keyword is used. When a constructor is called with the new operator, an object is created before the first
line of the constructor is executed; that object is accessible (at that point) only by using this. It is then
possible to assign properties directly to this that are returned as the function value by default (no need
to explicitly use the return operator).

92

Object Basics

Creating the object is now much more like general object creation in ECMAScript by using the new oper-
ator with the class name Car. You may be wondering if this paradigm has the same problems as the
previous one with managing functions. The answer is yes.

Just like factory functions, constructors duplicate functions, effectively creating a separate copy of a
function for each object. Also similar to factory functions, constructors can be rewritten with external
functions, but again, semantically they don’t make sense. This is where the prototype paradigm becomes
advantageous.

Prototype paradigm

This paradigm makes use of an object’s prototype property, which is considered to be the prototype
upon which new objects of that type are created. Here, an empty constructor is used only to set up the
name of the class. Then, all properties and methods are assigned directly to the prototype property.
Rewriting the previous example, the code looks like this:

function Car() {

}

Car.prototype.color = "red";

Car.prototype.doors = 4;

Car.prototype.mpg = 23;

Car.prototype.showColor = function () {
alert(this.color);

Y

var oCarl = new Car();
var oCar2 = new Car();

In this code, the constructor (Car) is defined first and contains no code. The next few lines of code define
the object’s properties by adding them to the prototype property of Car. When new Car () is called,
all the properties of prototype are immediately assigned to the object that was created, meaning that all
instances of Car contain pointers to the same showColor () function. Semantically, everything looks like
it belongs to an object, so the two problems of the previous paradigms have been solved. As an added
bonus, this method allows the use of the instanceof operator to check what kind of object a given vari-
able points to. So the following line outputs true:

alert (oCarl instanceof Car); //outputs "true"
It seems like this is a great solution. Unfortunately, not everything is better here.

First, you may notice that the constructor has no arguments. When using the prototype paradigm, it is
impossible to set the initial values of properties by passing arguments to the constructor, so both carl
and car2 have color equal to "red", doors equal to 4, and mpg equal to 23. This means any changes to
the default values must be done after the object is created, which is annoying —but not the end of the
world. The real problem arises when one of the properties points to an object other than a function.
Functions can be shared without any consequences, but objects are rarely meant to be shared across all
instances. Consider the following example:

function Car() {

}

93

Chapter 3

Car.prototype.color = "red";

Car.prototype.doors = 4;

Car.prototype.mpg = 23;

Car.prototype.drivers = new Array("Mike", "Sue");

Car.prototype.showColor = function () {
alert(this.color);

Y

var oCarl = new Car();
var oCar2 = new Car();

oCarl.drivers.push("Matt") ;

alert (oCarl.drivers) ; //outputs "Mike, Sue,Matt"
alert (oCar2.drivers) ; //outputs "Mike, Sue,Matt"

Here, a property called drivers is a pointer to an Array containing two names, Mike and Sue. Because
drivers is a reference value, both instances of Car point to the same array. This means that when
"Matt" is added to carl.drivers, itis also reflected in car2.drivers. Outputting either one of these
pointers results in the string "Mike, Sue, Matt" being displayed.

With so many problems in creating objects, you must be wondering if there is any way to create objects
in a rational way. The answer is to combine the best of both constructor and prototype paradigms.

Hybrid constructor/prototype paradigm

By using both the constructor and prototype paradigms, you can create an object just as you would
when using other programming languages. The concept is very simple: Use the constructor paradigm
to define all nonfunction properties of the object and use the prototype paradigm to define the function
properties (methods) of the object. The result is that functions are only created once, but each object can
have its own instance of object properties. If you once again rewrite this example, the code becomes the
following;:

function Car(sColor, iDoors, iMpg) {
this.color = sColor;
this.doors = iDoors;
this.mpg = iMpg;
this.drivers = new Array("Mike", "Sue");

}

Car.prototype.showColor = function () {
alert(this.color);

Y

var oCarl = new Car("red", 4, 23);
var oCar2 = new Car("blue", 3, 25);

oCarl.drivers.push("Matt");

alert (oCarl.drivers) ; //outputs "Mike, Sue,Matt"
alert (oCar2.drivers) ; //outputs "Mike, Sue"

94

Object Basics

Now that’s more like it. All the nonfunction properties are defined in the constructor, meaning that once
again it is possible to assign default values by passing arguments into the constructor. Only one instance
of the showColor () function is being created, so there is no wasted memory. Additionally, when ocar1
adds "Matt" to the drivers array, it has no effect on oCar2’s array, so when it output these arrays,
oCarl.drivers displays "Mike, Sue, Matt" whereas oCar2.drivers displays "Mike, Sue". Because
the prototype paradigm is used, it is still possible to use the instanceof operator to determine the type
of object.

In case you haven't figured it out, this paradigm is the dominant form used in ECMAScript because it
combines the positive attributes of the other paradigms without any of the harsh side effects. However,
some developers feel this is still not enough.

Dynamic prototype method

For developers coming from other languages, using the hybrid constructor/prototype paradigm is a lit-
tle jarring. After all, most object-oriented languages provide some sort of visual encapsulation of proper-
ties and methods when defining classes. Consider the following Java class:

class Car {
public String color = "red";
public int doors = 4;
public int mpg = 23;

public Car(String color, int doors, int mpg) {
this.color = color;
this.doors = doors;
this.mpg = mpg;

}

public void showColor() {
System.out.println(color);

}

Java provides a nice wrap of all properties and methods of the car class, so the code really looks more
like what it does: It defines information for one object. Critics of the hybrid constructor/prototype
paradigm say that it isn’t logical to look for some properties inside of the constructor and others outside
of it. So, the dynamic prototype method was devised to provide a more friendly coding style.

The basic idea behind dynamic prototyping is the same as the hybrid constructor/prototype paradigm:
Nonfunction properties are defined in the constructor, whereas function properties are defined on the
prototype property. The one difference is where the assignment of the methods takes place. Take a look
at the Car class rewritten using dynamic prototyping:

function Car(sColor, iDoors, iMpg) {
this.color = sColor;
this.doors = iDoors;
this.mpg = iMpg;
this.drivers = new Array("Mike", "Sue");

if (typeof Car._initialized == "undefined") {

95

Chapter 3

Car.prototype.showColor = function () {
alert(this.color);

Y
Car._initialized = true;

}

The constructor is identical until the line that checks if typeof Car._initializedisequal to "unde-
fined". This line is the most important part of the dynamic prototype method. If this value is unde-
fined, the constructor continues on to define the methods of the object using the prototype paradigm
and then sets Car._initialized to true. If the value is defined (when it’s true, its typeof is Boolean),
then the methods aren’t created again. Simply put, this method uses a flag (_initialized) to deter-
mine if the prototype has been assigned any methods yet. The methods are only created and assigned
once, and to the delight of traditional OOP developers, the code looks more like class definitions in other
languages.

Hybrid factory paradigm

96

This paradigm is typically used as a workaround when the previous paradigms don’t work. Here, the
aim is to create a dummy constructor that simply returns a new instance of another type of object. The
code looks very similar to the class paradigm’s factory function:

function Car() {
var oTempCar = new Object;
oTempCar.color = "red";
oTempCar.doors = 4;
oTempCar.mpg = 23;
oTempCar.showColor = function () {
alert(this.color)

bi

return oTempCar;

Unlike the classic paradigm, this paradigm uses the new keyword to make it seem like an actual con-
structor is being called:

var car = new Car();

Because the new operator is called within the Car () constructor, the second new operator (called outside
of the constructor) is essentially ignored. The object created inside the constructor is passed back into the
variable car.

This paradigm has the same problems as the classic paradigm regarding memory management of object
methods. It is highly recommended that you avoid using this method unless absolutely necessary (see
Chapter 15, “XML in JavaScript,” for an example of such a case).

Object Basics

Which one to use?

As mentioned previously, the hybrid constructor/prototype paradigm is the one most widely used at
present. That being said, dynamic prototyping is catching on in popularity and is functionally equiva-
lent. Using either of these two methods is perfectly fine. Don’t ever get caught using the classic, con-
structor or prototype paradigms alone, however, because you may introduce problems into code.

A practical example

Part of the appeal of objects is the way they can be used to solve problems. One of the common problems
in ECMAScript is the performance of string concatenation. Similar to other languages, ECMAScript
strings are immutable, meaning that their value cannot be changed. Consider the following code:

var str = "hello ";
str += "world";

This code actually executes the following steps behind the scenes:

1. Create astring to store "hello ".
Create a string to store "world".
Create a string to store the result of concatenation.

Copy the current contents of str into the result.

A o

Copy the "world" into the result.

6. Update str to point to the result.

Steps 2-6 occur every time a string concatenation is completed, making this a very expensive operation.
If this process is repeated hundreds or even thousands of times, performance suffers. The solution is to
use an Array object to store the strings and then use the join () method (with an empty string as an
argument) to create the final string. Imagine writing this code instead:

var arr = new Array;
arr[0] = "hello ";
arr[l] = "world";

var str = arr.join("");

Using this method, it doesn’t matter how many strings are introduced into the array because the only
concatenation occurs when the join () method is called. At that point, the following steps are executed:

1. Create a string to store the result.

2. Copy each string into the appropriate spot in the result.

Although this solution is good, it could be better. The problem is that the code doesn’t accurately reflect
its intent. To make it more understandable, this functionality can be wrapped in a StringBuffer class:

function StringBuffer() {

this.__strings__ = new Array;

}

97

Chapter 3

98

StringBuffer.prototype.append = function (str) {
this.__strings__ .push(str);

Y

StringBuffer.prototype.toString = function () {
return this.__strings__.join("");
}i

The first thing to note about this code is the strings property, which is intended to be private. It has
only two methods: append () and toString (). The append () method takes an argument and appends
it to the strings array and the toString () method returns the actual concatenated string by using the
array’s join () method. To concatenate a group of strings using a StringBuffer object, use the follow-
ing code:

var buffer = new StringBuffer();
buffer.append("hello ");
buffer.append("world") ;
var result = buffer.toString();

You can test the performance of the StringBuffer object versus traditional string concatenation with
the following code:

var dl = new Date();

var str = "";

for (var i=0; 1 < 10000; i++) {
Str += "text";

}

var d2 = new Date();

document.write("Concatenation with plus: " + (d2.getTime() - dl.getTime()) + "
milliseconds") ;

var oBuffer = new StringBuffer();

dl = new Date();

for (var 1=0; 1 < 10000; i++) {
oBuffer.append("text") ;

}

var sResult = buffer.toString();

d2 = new Date();

document.write("
Concatenation with StringBuffer: " + (d2.getTime() -
dl.getTime()) + " milliseconds");

The code runs two tests on string concatenation, the first by using the additive operator and the second
by using the StringBuf fer. Each operation concatenates 10,000 strings. The dates d1 and d2 are used
to determine how much time it takes to complete the operation. Remember, when you create a new Date
object without any arguments, it is assigned current date and time. To figure out how much time elapsed
during the concatenation, the millisecond representation of the dates (returned by the getTime ()
method) are subtracted. This is a common method of measuring JavaScript performance. The results of
this test should show a savings of 100—200% over using the additive operator.

Object Basics

Modifying Objects

Creating your own objects is just part of the fun in ECMAScript. How would you like to modify the
behavior of existing objects? This is completely possible in ECMAScript, so dream up whatever methods
you’d like for a String, Array, Number, or any other object, because the possibilities are endless.

Remember the prototype object from an earlier section in this chapter? You already know that each
constructor has a prototype property that can be used to define methods. What you don’t already
know is that each of the native objects in ECMAScript also has a prototype property that can be used
in the exactly same way.

Creating a new method

You can define a new method for any existing class by using its prototype property, just as you would
with your own classes. For instance, remember the toString () method of Number that outputs a hexa-
decimal string if you pass in 16 as an argument? Wouldn't it be nicer to have a toHexString () method
to handle the process? It’s simple to create it:

Number .prototype.toHexString = function () {
return this.toString(16);
Y

In this context, the this keyword points to the instance of Number and so has full access to all the
Number methods. With this code, it is possible to do this:

var iNum = 15;
alert (iNum. toHexString()) ; //outputs "F"

Because the number 15 is equal to hexadecimal F, the alert displays "F". And remember the discussion
about using an Array as a queue? The only thing missing was properly named methods. You can add
enqueue () and dequeue () to Array and just have them call the existing push () and shift () methods
respectively:

Array.prototype.enqueue = function(vItem) {
this.push(vItem) ;
Y

Array.prototype.dequeue = function() {
return this.shift();
Y

You can also, of course, add methods that don’t rely on existing methods at all. For example, say that
you want to determine the position of a particular item in an array. You have no native method to do
such a thing. You can easily create a method that does this:

Array.prototype.indexOf = function (vItem) {
for (var i=0; i < this.length; i++) {

if (vItem == this[i]) {
return 1i;

99

Chapter 3

}

return -1;

This method, named indexOf () to keep it consistent with the String method of the same name,
searches each item in the array until it finds the equivalent of the item passed in. If the item is found,
the method returns the position; if not, the method returns -1. With this defined, the following code is
possible:

var aColors = new Array("red", "green", "yellow");
alert (aColors.indexOf ("green")) ; //outputs "1"

Lastly, if you want to add a new method to every native object in ECMAScript, you must define it on the
Object’s prototype property. As discussed in the last chapter, all native objects inherit from Object, and
so any changes to Object are reflected in all native objects. For example, if you want to add a method
that outputs the current value of the object in an alert, you do the following;:

Object.prototype.showValue = function () {
alert(this.valueOf());
};

var str = "hello";

var iNum = 25;

str.showValue () ; //outputs "hello"
iNum.showValue () ; //outputs "25"

Here, both the String and Number objects inherit the showValue () method from Object, displaying
"hello" and "25" when called on their respective objects.

Redefining an existing method

Just as it is possible to define new methods for existing classes, it is also possible to redefine existing
methods. As discussed in the previous chapter, function names are simply pointers to functions, and as
such, can be easily changed to point to other functions. What happens if you change a native method,
such as toString()?

Function.prototype.toString = function () {
return "Function code hidden";
}i
The previous code is perfectly legal and works as expected:
function sayHi () {

alert("hi");
}

alert (sayHi.toString()); //outputs "Function code hidden"

100

Object Basics

You may recall from Chapter 2 that the Function’s toString () method normally outputs the source
code of the function. By overriding that method, you can supply a different string to return (in this case,
"Function code hidden"). But what happened to the original function that toString () was point-
ing to? Well, it has gone on to the garbage collector because it was fully dereferenced. You have no way
to get that original function back, which is why it is always safer to store a pointer to the original method
that you are overriding, just in case you need it later. You may even want to call that original method
under certain circumstances in your new method:

Function.prototype.originalToString = Function.prototype.toString;

Function.prototype.toString = function () {
if (this.originalToString().length > 100) {
return "Function too long to display.";
} else {
return this.originalToString();
}
}i

In this code, the first line saves a reference to the current toString () method in a property called
originalToString. Then, the toString () method is overridden with a custom method. This new
method checks to see if the length of the function source code is longer greater than 100. If so, the
method returns a small error message stating that the function code is too long; otherwise, it returns
the source code by calling originalToString ().

Very Ilate binding

Technically speaking, there is no such thing as very late binding. The term is used in this book to describe
a phenomenon in ECMAScript where it is possible to define a method for a type of object after the object
has already been instantiated. For example:

var o = new Object;

Object.prototype.sayHi = function () {
alert("hi");

Y

o.sayHi () ;

In most programming languages, you must define object methods well in advance of object instantia-
tion. Here, the sayHi () method is added to the Object class after an instance has been created. Not
only is that unheard of in traditional languages, but the instance of 0bject is then automatically
assigned the method and it can be used immediately (on the following line).

It is not recommended that you use very late binding because it can be difficult to
keep track of and document. However, you should understand that it is possible.

101

Chapter 3

Summary

ECMAScript provides JavaScript implementations with complete object-oriented language capabilities.
In this chapter, you have learned about the three different types of objects defined in ECMA-262: native
objects, built-in objects, and host objects.

You explored the Array and Date objects, learning about their methods, properties, and various quirks.
You also learned about the two built-in objects, Global and Math, as well as gained understanding

about how the Global object is different from others.

This chapter also introduced the capability to define your own objects from the ground up. Several dif-
ferent methods of accomplishing this were explored and their pros and cons discussed.

Finally, you learned how to modify existing objects to include new methods as well as to override exist-
ing methods.

The next chapter finishes up the introduction to the JavaScript Core, ECMAScript, with a discussion of
inheritance.

102

Inheritance

A truly object-oriented language must support inheritance, the capability of a class to reuse
(inherit) methods and properties from another class. In the previous chapter, you learned how to
define properties and methods of a class, but what if you want two classes to use the same meth-
ods? This is where inheritance comes in.

Inheritance in Action

The easiest way to describe inheritance is through a classic example, geometric shapes. There are
really two types of shapes: ellipses (which are rounded) and polygons (which have a certain num-
ber of sides). Circles are a type of ellipse with one focus; triangles, rectangles, and pentagons are
types of polygons with a different number of sides. A square is a type of rectangle with all sides
equal. This describes a perfect inheritance relationship.

In this example, Shape is the base class (the class to be inherited from) of Ellipse and Polygon. An
Ellipse has one property called foci, indicating the number of foci the Ellipse has. Circle inherits
from Ellipse, so Circle is a subclass of Ellipse and Ellipse is a superclass of Circle. Likewise, Triangle,
Rectangle, and Pentagon are subclasses of Polygon and Polygon is a superclass to each of these
shapes. Finally, Square inherits from Rectang]le.

The inheritance relationship is best explained through diagrams, which is where the Universal
Modeling Language (UML) comes in. One of UML’s many purposes is to visually represent com-
plex object relationships such as inheritance. Figure 4-1 is a UML diagram explaining the relation-
ship of Shape to its subclasses:

Chapter 4

Shape

Ellipse Polygon
I |
Circle Triangle Rectangle Pentagon
Square
Figure 4-1

In UML, each box represents a class, indicated by the class name. Lines coming from the top of Triangle,
Rectangle, and Pentagon converge and point at Shape, indicating that each of these classes inherits from
Shape. Likewise, the arrow pointing from Square to Rectangle indicates the inheritance relationship
there.

If you are interested in learning more about UML, refer to Instant UML (Wrox Press, ISBN
1861000871).

Implementing Inheritance

In order to implement inheritance in ECMAScript, you start out with a base class from which to inherit.
All developer-defined classes are candidate base classes. As a security precaution, native or host objects
cannot be base classes; this prevents giving the public access to compiled browser-level code that could
potentially be used in a malicious way.

After the base class has been selected, you can proceed to create its subclasses. It's completely up to you
whether or not the base class should be used at all. Sometimes, you may want to create a base class that
isn’t intended to be used directly. Instead, it only provides common functionality to subclasses. In this
case, the base class is considered abstract.

104

Inheritance

Although ECMAScript doesn’t strictly define abstract classes as some other languages do, it sometimes
creates certain base classes that aren’t supposed to be used. Usually these are simply documented as
abstract.

The subclasses you create inherit all properties and methods from the superclass, including the construc-
tor and method implementations. Remember, all the properties and methods are public, so subclasses
may access these directly. Subclasses may add new properties and methods not present in the superclass
or override properties and methods of the superclass with new implementations.

Methods of inheritance

As usual with ECMAScript, you have more than one way to implement inheritance. This is because
inheritance in JavaScript isn’t explicit; it’s emulated. This means that the interpreter doesn’t handle all
the inheritance details. It is up to you, as the developer, to handle inheritance in a way that is most
appropriate for your situation.

Object masquerading

Object masquerading was never intended when the original ECMAScript was conceived. Instead, it
evolved as developers began to understand exactly how functions worked and, specifically, how to use
the this keyword in the context of functions.

The reasoning goes like this: A constructor assigns all properties and methods (with the Constructor

Paradigm of class declaration) using the this keyword. Because a constructor is just a function, you can
make the constructor of Classa into a method of ClassB and call it. ClassB then receives the properties
and methods defined in ClassAa’s constructor. For example, Classa and ClassB are defined in this way:

function ClassA(sColor) {
this.color = sColor;
this.sayColor = function () {
alert (this.color);
Y
}

function ClassB(sColor) {

}

As you remember, the this keyword references the currently created object in a constructor; in a method,
however, this points to the owning object. The theory is that treating Classa as a regular function instead
of as a constructor establishes a type of inheritance. This can be done in the constructor c1assB like so:

function ClassB(sColor) {
this.newMethod = ClassA;
this.newMethod (sColor) ;
delete this.newMethod;

In this code, the method named newMethod is assigned to ClassA (remember, the name of a function is
just a pointer to it). Then, the method is called, passing the color argument from the ClassB construc-
tor. The final line of code deletes the reference to Classa so that it cannot be called later on.

105

Chapter 4

All new properties and methods must be added after the line that deletes the new method. Otherwise,
you run the risk of overwriting the new properties and methods with those of the superclass:

function ClassB(sColor, sName) {
this.newMethod = ClassA;
this.newMethod (sColor) ;
delete this.newMethod;

this.name = sName;

this.sayName = function () {
alert (this.name) ;

by

To prove that this works, you can run the following example:

var objA = new ClassA("red");

var objB = new ClassB("blue", "Nicholas");
objA.sayColor () ; //outputs "red"
objB.sayColor () ; //outputs "blue"
objB.sayName () ; //outputs "Nicholas"

As an interesting side note, object masquerading supports multiple inheritance, meaning that a class can
inherit from multiple superclasses. Multiple inheritance is represented in UML by showing the previous
superclasses of the subclass as shown in Figure 4-2.

ClassX ClassY

ClassZ

Figure 4-2
For example, if two classes, ClassX and Class Y, exist, and ClassZ wishes to inherit from both, then the
following code can be used:
function ClassZ() {
this.newMethod = ClassX;
this.newMethod() ;

delete this.newMethod;

this.newMethod = ClassY;

106

Inheritance

this.newMethod () ;
delete this.newMethod;

The one downside to this is that if C1lassX and ClassY have a property or method with the same name,
ClassY'’s takes priority because it is inherited from last. Besides that minor issue, multiple inheritance
with object masquerading is a breeze.

Because this method of inheritance caught on, the third edition of ECMAScript includes two new meth-
ods of the Function object: call () and apply ().

The call() method

The call () method is the method most similar to the classic object-masquerading method. Its first
argument is the object to be used for this. All other arguments are passed directly to the function itself.
For example:

function sayColor (sPrefix, sSuffix) ({
alert (sPrefix + this.color + sSuffix);

Y

var obj = new Object();
obj.color = "red";

//outputs "The color is red, a very nice color indeed. "
sayColor.call (obj, "The color is ", ", a very nice color indeed. ");

In this example, the function sayColor () is defined outside of an object, and it references the this key-
word even though it is not attached to any object. The object obj is given a color property equal to
"red". When call () is, well, called, the first argument is obj, which indicates that the this keyword
in sayColor () should be assigned the value of obj. The second and third arguments are strings. They
are matched up with the prefix and suffix arguments of sayColor (), resulting in the message "The
color is red, a very nice color indeed." being displayed.

To use this with the object masquerading method of inheritance, just replace the three lines that assign,
call, and delete the new method:

function ClassB(sColor, sName) {
//this.newMethod = ClassA;
//this.newMethod (sColor) ;
//delete this.newMethod;
ClassA.call(this, sColor);

this.name = sName;

this.sayName = function () {
alert (this.name) ;

Y

Here, you want the this keyword in Classa to be equal to the newly created ClassB object, so this is
passed in as the first argument. The second argument is the color argument, the only one for either
class.

107

Chapter 4

The apply() method

The apply () method takes two arguments: the object to be used for this and an array of arguments to
be passed to the function. For example:

function sayColor (sPrefix, sSuffix) {
alert (sPrefix + this.color + sSuffix);

Y

var obj = new Object();
obj.color = "red";

//outputs "The color is red, a very nice color indeed.
sayColor.apply(obj, new Array("The color is ",", a very nice color indeed."));

This is the same example as before, but now the apply () method is being called. When apply () is
called, the first argument is still obj, which indicates that the this keyword in sayColor () should be
assigned the value of obj. The second argument is an array consisting of two strings, which are matched
up with the prefix and suffix arguments of sayColor (). This also results in the message "The color
is red, a very nice color indeed." being displayed.

This method is also used in place of the three lines to assign, call, and delete the new method:

function ClassB(sColor, sName) {
//this.newMethod = ClassA;
//this.newMethod (sColor) ;
//delete this.newMethod;
ClassA.apply(this, new Array(sColor));

this.name = sName;
this.sayName = function () {
alert (this.name) ;

Y

Once again, you pass this in as the first argument. The second argument is an array with just one value:
color. You can, alternatively, pass in the entire arguments object of ClassB as the second argument of
the apply () method:

function ClassB(sColor, sName) {
//this.newMethod = ClassA;
//this.newMethod (sColor) ;
//delete this.newMethod;
ClassA.apply(this, arguments) ;

this.name = sName;
this.sayName = function () {
alert (this.name) ;

Y

Of course, passing in the object of the arguments only works if the order of the arguments in the super-
class constructor is exactly the same as the order of the arguments in the subclass. When this is not the

108

Inheritance

case, you must create a separate array to place the arguments into the correct order. You could also use
the call () method.

Prototype chaining

The form of inheritance actually intended for use in ECMAScript is prototype chaining. The last chapter
introduced the prototype paradigm for defining classes. Prototype chaining builds off this paradigm to
accomplish inheritance in an interesting way:.

In the last chapter, you learned that the prototype object is the template upon which an object is based
when instantiated. To summarize: Any properties or methods on the prototype object will be passed
on all instances of that class. Prototype chaining uses this functionality to accomplish inheritance.

If the classes from the previous example are redefined using the prototype paradigm, they become the
following:

function ClassA() {

}

ClassA.prototype.color = "red";

ClassA.prototype.sayColor = function () {
alert(this.color);

Y

function ClassB() {
}

ClassB.prototype = new ClassA();

The magic in prototype chaining occurs in the highlighted previous line. Here, you are setting the
prototype property of ClassB to be an instance of ClassA. This makes perfect sense because you want
all the properties and methods of Classa, but you don’t want to have to assign each of them separately
to ClassB’s prototype property. What better way to do this than just to make the prototype into an
instance of ClassA?

Note that no parameters are passed into the classa constructor call. This is standard
in prototype chaining. Be sure that your constructor functions properly without any
arguments.

Similar to object masquerading, all new properties and methods of the subclass must come after the
assignment of the prototype property because all methods assigned before will be deleted. Why?
Because the prototype property is being completely replaced with a new object; the original object to
which you would have added the methods is destroyed. So to add the name property and the sayName ()
method to ClassB, the code looks like this:

function ClassB() {

}

ClassB.prototype = new ClassA();

109

Chapter 4

ClassB.prototype.name = "";

ClassB.prototype.sayName = function () {
alert (this.name) ;

};

You can test this code by running the following example:

var objA = new ClassA();
var objB = new ClassB();

objA.color = "red";

objB.color = "blue";

objB.name = "Nicholas";

objA.sayColor(); //outputs "red"
objB.sayColor () ; //outputs "blue"
objB.sayName () ; //outputs "Nicholas"

As a bonus, the instanceof operator works in a rather unique way in prototype chaining. For all
instances of ClassB, instanceof returns true for both Classa and classB. For example:

var objB = new ClassB();
alert (objB instanceof ClassAd); //outputs "true";
alert (objB instanceof ClassB); //outputs "true"

In the loosely typed world of ECMAScript, this can be an incredibly useful tool, one that is not available
when you use object masquerading.

The downside to prototype chaining is that it has no support for multiple inheritance. Remember, proto-
type chaining involves overwriting the prototype property of the class with another type of object.

Hybrid method

You may have noticed that this method of inheritance uses the constructor paradigm to define classes
without any use of prototyping. The main problem with object masquerading is that you must use the
constructor paradigm, which (as you learned in the last chapter) is not optimal. But if you go with proto-
type chaining, you lose the capability to have constructors with arguments. What’s a developer to do?
The answer is simple: Use both.

In the previous chapter, you learned that the best way to create classes is to use the constructor paradigm
to define the properties and to use the prototype paradigm to define the methods. The same goes for
inheritance; you use object masquerading to inherit properties from the constructor and prototype chain-
ing to inherit methods from the prototype object. Take a look at the previous example rewritten using
both methods of inheritance:

function ClassA(sColor) {
this.color = sColor;

}
ClassA.prototype.sayColor = function () {
alert(this.color);

Y

function ClassB(sColor, sName) {

110

Inheritance

ClassA.call (this, sColor);
this.name = sName;

}

ClassB.prototype = new ClassA() ;

ClassB.prototype.sayName = function () {
alert (this.name) ;

Y

In this example, inheritance is accomplished with the two highlighted lines. First, in the C1assB con-
structor, object masquerading is used to inherit the color property from ClassA. In the second high-
lighted line, prototype chaining is used to inherit the methods of classa. Because this hybrid method
uses prototype chaining, the instanceof operator still works correctly.

The following example tests this code:

var objA = new ClassA("red");

var objB = new ClassB("blue", "Nicholas");
objA.sayColor () ; //outputs "red"
objB.sayColor () ; //outputs "blue"
objB.sayName () ; //outputs "Nicholas"

A more practical example

In real Web sites and applications, chances are you won't be creating classes named Classa and ClassB.
It’s far more likely that you will create classes that represent specific things, such as shapes. If you con-
sider the shapes example from the beginning of the chapter, the Polygon, Triangle, and Rectangle
classes form a nice set of data to explore.

Creating the base class

Think of the Polygon class first. What sort of properties and methods are necessary? First, it’s important
to know the number of sides the polygon has, so an integer property named sides should be included.
What else might be necessary for a polygon? You may want to determine the area of polygon, so add a
method named getArea () to calculate it. Figure 4-3 shows the UML representation of this class.

Polygon
sides : integer

getArea(): integer

Figure 4-3

In UML, properties are represented by the property name and type in the section immediately under the
class name. Methods are located under the properties, indicating the method name and the type of the
return value.

111

Chapter 4

In ECMAScript, the class can be written like this:

function Polygon(iSides) {

this.sides = iSides;

}

Polygon.prototype.getArea = function () {
return 0;

Y

Note that the Polygon class isn’t specific enough to be used by itself; getArea () returns 0 because it is
just a placeholder for the subclasses to override.

Creating the subclasses

Now consider the Triangle class. A triangle has three sides, so this class has to override the Polygon
class’s sides property and set it to 3. The getaArea () method also has to be overridden to use the area
formula for a triangle, which is % X base x height. But how does the method get the values for base and
height? They must be entered specifically, and so you must create a base property and a height prop-
erty. The UML representation for Triangle is displayed in Figure 4-4.

Triangle
base : integer
height: integer
getArea(): integer

Figure 4-4

This diagram shows only the new properties and overridden methods of Triangle.If Triangle
doesn’t override getArea (), the method is not listed in the diagram. It would be considered as retained
from Polygon. The complete UML diagram showing the relationship between Polygon and Triangle
(Figure 4-5) makes it a little bit clearer.

Polygon
sides : integer

getArea(): integer

Triangle
base : integer
height: integer
getArea(): integer

Figure 4-5

112

Inheritance

In UML, you never duplicate properties or methods that are inherited unless a method is being overrid-
den (or overloaded, which is not possible in ECMAScript).

The code for the Triangle class is:

function Triangle(iBase, iHeight) {
Polygon.call (this, 3);
this.base = iBase;
this.height = iHeight;

}

Triangle.prototype = new Polygon();
Triangle.prototype.getArea = function () {

return 0.5 * this.base * this.height;
Y

Note that the Triangle constructor accepts two arguments, base and height, even though the Polygon
constructor accepts just one, sides. This is because you already know the number of sides in a triangle,
and you don’t want to allow the developer to change that. So, when you use object masquerading, the
number 3 is passed to the Polygon constructor as the number of sides for this object. Then, the values for
base and height are assigned the appropriate properties.

After using prototype chaining to inherit the methods, Triangle then overrides the getArea () method
to provide the custom calculation required for the calculation of triangle areas.

The last class is Rectangle, which also inherits from Polygon. Rectangles have four sides and the area
is calculated by multiplying the length by the width, which are two properties needed for the class.
Rectangle fits into the earlier UML diagram next to Triangle because both have Polygon as a super-
class (see Figure 4-6).

Polygon
sides : integer

getArea(): integer

Triangle Rectangle
base : integer length : integer
height: integer width : integer
getArea(): integer getArea(): integer

Figure 4-6

The ECMAScript code for Rectangle is as follows:

function Rectangle(iLength, iwidth) ({
Polygon.call (this, 4);
this.length = iLength;
this.width = iwidth;

113

Chapter 4

}

Rectangle.prototype = new Polygon() ;
Rectangle.prototype.getArea = function () {
return this.length * this.width;

Y

Notice that the Rectangle constructor also doesn’t accept sides as an argument, and once again a con-
stant value (4) is passed directly to the Polygon constructor. Also similar to Triangle, Rectangle
introduces two new properties as arguments to the constructor and then overrides the getaArea ()
method.

Testing the code

You can test the code created for this example by running the following code:

var triangle = new Triangle (12, 4);
var rectangle = new Rectangle (22, 10);

alert(triangle.sides) ; //outputs "3"
alert(triangle.getAreal()); //outputs "24"
alert (rectangle.sides); //outputs "4"
alert (rectangle.getArea()); //outputs "220"

This code creates a triangle, with a base of 12 and a height of 4, and a rectangle, with a length of 22 and
a width of 10. Then, both the number of sides and the area of each shape are output to prove that the
sides property is being properly filled and the getArea () method is returning the correct value. The
area of the triangle should be 24 and the area of the rectangle should be 220.

What about dynamic prototyping?

The previous example uses the hybrid constructor/prototype paradigm of object definition to show
inheritance, but does it work with dynamic prototyping? The answer is no.

The reason that inheritance doesn’t work with dynamic prototyping is because of the unique nature of
the prototype object. Take a look at the following code (which is incorrect, but important to study
nonetheless):

function Polygon(iSides) {

this.sides = iSides;
if (typeof Polygon._initialized == "undefined") {
Polygon.prototype.getArea = function () {
return 0;

bi
Polygon._initialized = true;

}

function Triangle(iBase, iHeight) {

114

Inheritance

Polygon.call (this, 3);
this.base = iBase;
this.height = iHeight;

if (typeof Triangle._initialized == "undefined") {

Triangle.prototype = new Polygon() ;
Triangle.prototype.getArea = function () {

return 0.5 * this.base * this.height;
}i

Triangle._initialized = true;

The previous code illustrates both Polygon and Triangle defined using dynamic prototyping. The mis-
take is in the highlighted line, where Triangle.prototype is set. Logically, this is the correct location;
but functionally, it doesn’t work. Technically, by the time that code is run, the object is already instanti-
ated and tied to the original prototype object. Although changes to that prototype object are reflected
properly with very late binding, replacing the prototype object has no effect on that object. Only future
object instances reflect the change, making the first instance incorrect.

To correctly use dynamic prototyping with inheritance, you must assign the new prototype object out-
side of the constructor, like this:

function Triangle(iBase, iHeight) {
Polygon.call (this, 3);
this.base = iBase;
this.height = iHeight;

if (typeof Triangle._initialized == "undefined") {

Triangle.prototype.getArea = function () {
return 0.5 * this.base * this.height;

Y

Triangle._initialized = true;

}

Triangle.prototype = new Polygon() ;
This code works because the prototype object is assigned before any objects are instantiated.

Unfortunately, this means the code isn’t completely encapsulated in the constructor, which is the main
purpose of dynamic prototyping.

Alternative Inheritance Paradigms

Due to the limitations of ECMAScript inheritance (for instance, lack of a private scope and the inability
to easily access superclass methods), developers around the world have constantly pushed their code to

115

Chapter 4

the limit in an effort to create other ways of implementing inheritance. This section examines some of the
alternatives to the standard ECMAScript inheritance paradigms.

Zinherit

Prototype chaining essentially copies all methods from an object to a class’s prototype object. But
what if there were a different way to accomplish this? There is. Using the zInherit library (available at
http://www.nczonline.net/downloads), it’s possible to accomplish method inheritance without
using prototype chaining. This small library supports all modern browsers (Mozilla, IE, Opera, Safari)
as well as some older browsers (Netscape 4.x, IE/Mac).

In order to use the zInherit library, you must include zinherit.js using the <script/> tag. Chapter 5,
“JavaScript in the Browser,” discusses including external JavaScript files in detail.

The zInherit library adds two methods to the Object class: inheritFrom() and instanceOf (). As
you may have guessed, the inheritFrom () method does the heavy lifting, copying the methods from
a given class. The following line uses prototype chaining to inherit methods from classa to ClassB:
ClassB.prototype = new ClassA();
This line can be replaced with the following:
ClassB.prototype.inheritFrom(ClassA) ;
The inheritFrom() method accepts one argument, which is the class from which to copy the methods.
Note that, as opposed to prototype chaining, this paradigm doesn’t actually create a new instance of the

class to inherit from, making it a little safer and freeing the developer from worrying about the construc-
tor arguments.

The inheritFrom() method call must be used exactly where the prototype assign-
ment normally occurs in order to ensure proper inheritance.

The instanceOf () method is a replacement for the instanceof operator. Because this paradigm
doesn’t use prototype chaining at all, this line of code won’t work:

ClassB instanceof ClassA

The instanceOf () method makes up for this loss, working with inheritFrom() to keep track of all
superclasses:

ClassB.instanceOf (ClassA) ;

Polygons revisited

The entire polygon example can be rewritten using the zInherit library by replacing just two lines
(highlighted):

116

Inheritance

function Polygon(iSides) {

this.sides = iSides;

}

Polygon.prototype.getArea = function () {
return 0;

Y

function Triangle(iBase, iHeight) {
Polygon.call (this, 3);
this.base = iBase;
this.height = iHeight;

Triangle.prototype.inheritFrom(Polygon) ;

Triangle.prototype.getArea = function () {
return 0.5 * this.base * this.height;
}i

function Rectangle(iLength, iWidth) ({
Polygon.call (this, 4);
this.length = iLength;
this.width = iwidth;

Rectangle.prototype.inheritFrom(Polygon) ;
Rectangle.prototype.getArea = function () {

return this.length * this.width;
Y

To test this code, you can use the same example as before and add in a couple extra lines to test out the

instanceOf () method:

var triangle = new Triangle (12, 4);
var rectangle = new Rectangle(22, 10);

alert(triangle.sides);
alert(triangle.getArea());

alert (rectangle.sides);
alert (rectangle.getArea());

alert (triangle.instanceOf (Triangle)) ; //outputs
alert (triangle.instanceOf (Polygon)) ; //outputs
alert (rectangle.instanceOf (Rectangle)); //outputs
alert (rectangle.instanceOf (Polygon)) ; //outputs

"true"
"true"

"true"
"true"

The last four lines test instance0Of () and should all return true.

117

Chapter 4

Dynamic prototyping support

As mentioned earlier, prototype chaining can’t be used in the true spirit of dynamic prototyping, which
is to keep all code for a class inside of its constructor. The zInherit library fixes this problem by allowing
the inheritFrom() method to be called from inside the constructor.

Take a look at the polygon dynamic prototyping example used earlier, now with the addition of the
zInherit library:

function Polygon(iSides) {

this.sides = iSides;
if (typeof Polygon._initialized == "undefined") {
Polygon.prototype.getArea = function () {
return 0;

Y

Polygon._initialized = true;

function Triangle(iBase, iHeight) {
Polygon.call (this, 3);
this.base = iBase;
this.height = iHeight;

if (typeof Triangle._initialized == "undefined") {
Triangle.prototype.inheritFrom(Polygon) ;
Triangle.prototype.getArea = function () {

